Chapter 12, Rationale Management

An aircraft example

A320
- First fly-by-wire passenger aircraft
- 150 seats, short to medium haul

A319 & A321
- Derivatives of A320
- Same handling as A320

Design rationale
- Reduce pilot training & maintenance costs
- Increase flexibility for airline

Overview: rationale

- What is rationale?
- Why is it critical in software engineering?
- Centralized traffic control example
- Rationale in project management
 - Consensus building
 - Consistency with goals
 - Rapid knowledge construction
- Summary

What is rationale?

Rationale is the reasoning that lead to the system.

Rationale includes:
- the issues that were addressed,
- the alternatives that were considered,
- the decisions that were made to resolve the issues,
- the criteria that were used to guide decisions, and
- the debate developers went through to reach a decision.

Why is rationale important in software engineering?

Many software systems are like aircraft:

They result from a large number of decisions taken over an extended period of time.

- Evolving assumptions
- Legacy decisions
- Conflicting criteria

-> high maintenance cost
-> loss & rediscovery of information
Uses of rationale in software engineering

- Improve design support
 - Avoid duplicate evaluation of poor alternatives
 - Make consistent and explicit trade-offs
- Improve documentation support
 - Makes it easier for non-developers (e.g., managers, lawyers, technical writers) to review the design
- Improve maintenance support
 - Provide maintainers with design context
- Improve learning
 - New staff can learn the design by replaying the decisions that produced it

Representing rationale: issue models

Argumentation is the most promising approach so far:
- More information than document: captures trade-offs and discarded alternatives that design documents do not.
- Less messy than communication records: communication records contain everything.

Issue models represent arguments in a semi-structured form:
- Nodes represent argument steps
- Links represent their relationships

ATM Example

Question: Alternative Authentication Mechanisms?
References: Service: Authenticate
Decision: Smart Card + PIN

<table>
<thead>
<tr>
<th>Criteria 1: ATM Unit Cost</th>
<th>Criteria 2: Privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1: Account number</td>
<td>+</td>
</tr>
<tr>
<td>Option 2: Fingerprint reader</td>
<td>–</td>
</tr>
<tr>
<td>Option 3: Smart Card + PIN</td>
<td>+</td>
</tr>
</tbody>
</table>

Centralized traffic control

- CTC systems enable dispatchers to monitor and control trains remotely
- CTC allows the planning of routes and replanning in case of problems

Centralized traffic control (2)

CTC systems are ideal examples of rationale capture:
- Long-lived systems (some systems include relays installed last century)
 - Extended maintenance life cycle
- Although not life critical, downtime is expensive
 - Low tolerance for bugs
 - Transition to mature technology

Issues

- Issues are concrete problems which usually do not have a unique, correct solution.
- Issues are phrased as questions.

Issues

- Issues are concrete problems which usually do not have a unique, correct solution.
- Issues are phrased as questions.
Proposals

- Proposals are possible alternatives to issues.
- One proposal can be shared across multiple issues.

Consequent issue

- Consequent issues are issues raised by the introduction of a proposal.

Criteria

- A criteria represent a goodness measure.
- Criteria are often design goals or nonfunctional requirements.

Arguments

- Arguments represent the debate developers went through to arrive to resolve the issue.
- Arguments can support or oppose any other part of the rationale.
- Arguments constitute the most part of rationale.

Arguments (2)

- Point & click interfaces are more complex to implement than text-based interfaces. Hence, they are also more difficult to test. The point & click interface risks introducing fatal errors in the system that would offset any usability benefit the interface would provide.

Resolutions

- Resolutions represent decisions.
- A resolution summarizes the chosen alternative and the argument supporting it.
- A resolved issue is said to be closed.
- A resolved issue can be re-opened if necessary, in which case the resolution is demoted.
Resolutions (2)

- Designed for capturing rationale after the fact (e.g., quality assessment).
- QOC emphasizes criteria

Questions, Options, Criteria

- What is rationale?
- Why is it critical in software engineering?
- Centralized traffic control example
- Rationale in project management
 - Consensus building (WinWin)
 - Consistency with goals (NFR Framework)
 - Rapid knowledge construction (Compendium)

Overview: rationale

- What is rationale?
- Why is it critical in software engineering?
- Centralized traffic control example
- Rationale in project management
 - Consensus building (WinWin)
 - Consistency with goals (NFR Framework)
 - Rapid knowledge construction (Compendium)
- Summary

Consensus building

- Any realistic project suffers the tension of conflicting goals
- Stakeholders come from different background
- Stakeholders have different criteria

Consensus building: WinWin

- Incremental, risk driven spiral process
 - Identification of stakeholders
 - Identification of win conditions
 - Conflict resolution
- Asynchronous groupware tool
 - Stakeholders post win conditions
 - Facilitator detects conflict
 - Stakeholders discuss alternatives
 - Stakeholders make agreements
Consensus building: Model

- Win Condition
 - involves
 - covers
- Issue
 - addresses
- Option
 - adopts
- Agreement

Consensus building: Process

1. Identify stakeholders
2. Identify stakeholders’ win conditions
4. Evaluate & resolve risks.
5. Define solution
6. Validate
7. Review & commit

Consensus building: WinWin tool

Consensus building: Experiences

Context
- Initial case studies used project courses with real customers
- Used in industry

Results
- Risk management focus
- Trust building between developers and clients
- Discipline
- Inadequate tool support

Consistency with goals

Problem
- Once multiple criteria have been acknowledged
- Find solutions that satisfy all of them
- Document the trade-offs that were made

Example
- Authentication should be secure, flexible for the user, and low cost.

Consistency with goals: NFR Framework

- NFR goal refinement
 - NFRs are represented as goals in a graph
 - Leaf nodes of the graph are operational requirements
 - Relationships represent “help” “hurt” relationships
 - One graph can represent many alternatives

- NFR evaluation
 - Make and break values are propagated through the graph automatically
 - Developer can evaluate different alternatives and compare them
Consistency with goals: Model

- Flexibility
- Low cost
- Security
- Authentication
- Confidentiality
- Integrity
- Account+PIN
- Finger Print Reader
- SmartCard+PIN

Consistency with goals: Process

- Elicit high-level goals
- Evaluate alternatives
- Refine into detailed goals
- Identify operational goals
- Identify goal dependencies

Consistency with goals: Experiences

- Case studies on existing systems lead to clearer trade-offs
- Research into integrating NFR framework and design patterns
 - Match NFRs to design pattern “Forces”
 - Link NFRs, design patterns, and functional requirements
- Tool support important

Rapid knowledge construction

Problem
- When a company is large enough, it doesn’t know what it does.
 - Knowledge rarely crosses organizational boundaries
 - Knowledge rarely crosses physical boundaries

Example
- Identify resources at risk for Y2K and prioritize responses.

Rapid knowledge construction: Compendium

- Meeting facilitation
 - Stakeholders from different business units
 - External facilitator
- Real-time construction of knowledge maps
 - The focus of the meeting is a concept map under construction
 - Map includes the issue model nodes and custom nodes (e.g., process, resource, etc.)
- Knowledge structuring for long term use
 - Concept map exported as document outline, process model, memos, etc.
Rapid knowledge construction: Process example

Rapid knowledge Construction: Experiences

Context
- Several industrial case studies, including Y2K contingency planning at Bell Atlantic

Results
- Increased meeting efficiency (templates are reused)
- Knowledge reused for other tasks

Summary
- Rationale can be used in project management
 - To build consensus (WinWin)
 - To ensure quality (NFR Framework)
 - To elicit knowledge (Compendium)
- Other applications include
 - Risk management
 - Change management
 - Process improvement
- Open issues
 - Tool support
 - User acceptance