
Page 1

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 4, Requirements
Elicitation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

What is this?

Location: Hochschule für Musik und Theater, Arcisstraße 12

Question: How do you mow the lawn?

Lesson: Find the functionality first, then the objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Where are we right now?

♦ Three ways to deal with complexity:
! Abstraction
! Decomposition (Technique: Divide and conquer)
! Hierarchy (Technique: Layering)

♦ Two ways to deal with decomposition:
! Object-orientation and functional decomposition
! Functional decomposition leads to unmaintainable code
! Depending on the purpose of the system, different objects can be

found
♦ What is the right way?

! Start with a description of the functionality (Use case model). Then
proceed by finding objects (object model).

♦ What activities and models are needed?
! This leads us to the software lifecycle we use in this class

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Software Lifecycle Definition

♦ Software lifecycle:
! Set of activities and their relationships to each other to support the

development of a software system

♦ Typical Lifecycle questions:
! Which activities should I select for the software project?
! What are the dependencies between activities?
! How should I schedule the activities?
! What is the result of an activity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Software Lifecycle Activities

Application
Domain
Objects

SubSystems

class...
class...
class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured By

Implemented
By

Realized By Verified
By

System
Design

Object
Design

Implemen-
tation Testing

class....?

Requirements
Elicitation

Use Case
Model

Requirements
Analysis

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Rational Unified Process (RUP)

Page 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

First Step in Establishing the Requirements:
System Identification

♦ The development of a system is not just done by taking a
snapshot of a scene (domain)

♦ Two questions need to be answered:
! How can we identify the purpose of a system?
! Crucial is the definition of the system boundary: What is inside,

what is outside the system?
♦ These two questions are answered in the requirements process
♦ The requirements process consists of two activities:

! Requirements Elicitation:
" Definition of the system in terms understood by the customer

(�Problem Description�)
! Requirements Analysis:

" Technical specification of the system in terms understood by the
developer (�Problem Specification�)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Products of Requirements Process

Requirements
Analysis

system
specification:

Model

analysis
model: Model

(Activity Diagram)

Problem
Statement
Generation

Requirements
Elicitation

Problem
Statement

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Requirements Elicitation

♦ Very challenging activity
♦ Requires collaboration of people with different backgrounds

! Users with application domain knowledge
! Developer with solution domain knowledge (design knowledge,

implementation knowledge)

♦ Bridging the gap between user and developer:
! Scenarios: Example of the use of the system in terms of a series of

interactions with between the user and the system
! Use cases: Abstraction that describes a class of scenarios

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

System Specification vs Analysis Model

♦ Both models focus on the requirements from the user�s view of
the system.

♦ System specification uses natural language (derived from the
problem statement)

♦ The analysis model uses formal or semi-formal notation (for
example, a graphical language like UML)

♦ The starting point is the problem statement

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Problem Statement

♦ The problem statement is developed by the client as a
description of the problem addressed by the system

♦ Other words for problem statement:
! Statement of Work

♦ A good problem statement describes
! The current situation
! The functionality the new system should support
! The environment in which the system will be deployed
! Deliverables expected by the client
! Delivery dates
! A set of acceptance criteria

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Ingredients of a Problem Statement
♦ Current situation: The Problem to be solved
♦ Description of one or more scenarios
♦ Requirements

! Functional and Nonfunctional requirements
! Constraints (�pseudo requirements�)

♦ Project Schedule
! Major milestones that involve interaction with the client including deadline

for delivery of the system
♦ Target environment

! The environment in which the delivered system has to perform a specified
set of system tests

♦ Client Acceptance Criteria
! Criteria for the system tests

Page 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Current Situation: The Problem To Be Solved

♦ There is a problem in the current situation
! Examples:

" The response time when playing letter-chess is far too slow.
" I want to play Go, but cannot find players on my level.

♦ What has changed? How to address the changed problem?
! There has been a change, either in the application domain or in the

solution domain
! Change in the application domain

" A new function (business process) is introduced into the business
" Example: We can play highly interactive games with remote people

! Change in the solution domain
" A new solution (technology enabler) has appeared
" Example: The internet allows the creation of virtual communities.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Types of Requirements
♦ Functional requirements:

! Describe the interactions between the system and its environment
independent from implementation

! Examples:
" An ARENA operator should be able to define a new game.

♦ Nonfunctional requirements:
! User visible aspects of the system not directly related to functional

behavior.
! Examples:

" The response time must be less than 1 second
" The ARENA server must be available 24 hours a day

♦ Constraints (�Pseudo requirements�):
! Imposed by the client or the environment in which the system operates

" The implementation language must be Java
" ARENA must be able to dynamically interface to existing games provided by

other game developers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

What is usually not in the requirements?

♦ System structure, implementation technology
♦ Development methodology
♦ Development environment
♦ Implementation language
♦ Reusability

♦ It is desirable that none of these above are constrained by the
client. Fight for it!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Requirements Validation
♦ Requirements validation is a critical step in the development process, usually after

requirements engineering or requirements analysis. Also at delivery (client acceptance
test).

♦ Requirements validation criteria:
! Correctness:

" The requirements represent the client�s view.
! Completeness:

" All possible scenarios, in which the system can be used, are described,
including exceptional behavior by the user or the system

! Consistency:
" There are functional or nonfunctional requirements that contradict each other

! Realism:
" Requirements can be implemented and delivered

! Traceability:
" Each system function can be traced to a corresponding set of functional requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Requirements Validation

♦ Problem with requirements validation: Requirements change
very fast during requirements elicitation.

♦ Tool support for managing requirements:
! Store requirements in a shared repository
! Provide multi-user access
! Automatically create a system specification document from the

repository
! Allow change management
! Provide traceability throughout the project lifecycle

♦ RequisitPro from Rational
! http://www.rational.com/products/reqpro/docs/datasheet.html

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Types of Requirements Elicitation

♦ Greenfield Engineering
! Development starts from scratch, no prior system exists, the

requirements are extracted from the end users and the client
! Triggered by user needs
! Example: Develop a game from scratch: Asteroids

♦ Re-engineering
! Re-design and/or re-implementation of an existing system using

newer technology
! Triggered by technology enabler
! Example: Reengineering an existing game

♦ Interface Engineering
! Provide the services of an existing system in a new environment
! Triggered by technology enabler or new market needs
! Example: Interface to an existing game (Bumpers)

Page 4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Scenarios

♦ �A narrative description of what people do and experience as
they try to make use of computer systems and applications� [M.
Carrol, Scenario-based Design, Wiley, 1995]

♦ A concrete, focused, informal description of a single feature of
the system used by a single actor.

♦ Scenarios can have many different uses during the software
lifecycle
! Requirements Elicitation: As-is scenario, visionary scenario
! Client Acceptance Test: Evaluation scenario
! System Deployment: Training scenario.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Types of Scenarios
♦ As-is scenario:

! Used in describing a current situation. Usually used in re-engineering projects.
The user describes the system.

" Example: Description of Letter-Chess
♦ Visionary scenario:

! Used to describe a future system. Usually used in greenfield engineering and
reengineering projects.

! Can often not be done by the user or developer alone
" Example: Description of an interactive internet-based Tic Tac Toe game

tournament.
♦ Evaluation scenario:

! User tasks against which the system is to be evaluated.
" Example: Four users (two novice, two experts) play in a TicTac Toe tournament in

ARENA.
♦ Training scenario:

! Step by step instructions that guide a novice user through a system
" Example: How to play Tic Tac Toe in the ARENA Game Framework.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

How do we find scenarios?

♦ Don�t expect the client to be verbal if the system does not exist
(greenfield engineering)

♦ Don�t wait for information even if the system exists
♦ Engage in a dialectic approach (evolutionary, incremental

engineering)
! You help the client to formulate the requirements
! The client helps you to understand the requirements
! The requirements evolve while the scenarios are being developed

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Heuristics for finding Scenarios

♦ Ask yourself or the client the following questions:
! What are the primary tasks that the system needs to perform?
! What data will the actor create, store, change, remove or add in the

system?
! What external changes does the system need to know about?
! What changes or events will the actor of the system need to be

informed about?

♦ However, don�t rely on questionnaires alone.
♦ Insist on task observation if the system already exists (interface

engineering or reengineering)
! Ask to speak to the end user, not just to the software contractor
! Expect resistance and try to overcome it

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Next goal, after the scenarios are formulated:

♦ Find all the use cases in the scenario that specifies all possible
instances of how to report a fire
! Example: �Report Emergency � in the first paragraph of the

scenario is a candidate for a use case

♦ Describe each of these use cases in more detail
! Participating actors
! Describe the Entry Condition
! Describe the Flow of Events
! Describe the Exit Condition
! Describe Exceptions
! Describe Special Requirements (Constraints, Nonfunctional

Requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

ReportEmergency

Use Cases

♦ A use case is a flow of events in the system, including interaction with
actors

♦ It is initiated by an actor
♦ Each use case has a name
♦ Each use case has a termination condition
♦ Graphical Notation: An oval with the name of the use case

Use Case Model: The set of all use cases specifying the
complete functionality of the system

Page 5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Example: Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Heuristics: How do I find use cases?

♦ Select a narrow vertical slice of the system (i.e. one scenario)
! Discuss it in detail with the user to understand the user�s preferred

style of interaction

♦ Select a horizontal slice (i.e. many scenarios) to define the
scope of the system.
! Discuss the scope with the user

♦ Use illustrative prototypes (mock-ups) as visual support
♦ Find out what the user does

! Task observation (Good)
! Questionnaires (Bad)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Order of steps when formulating use cases

♦ First step: name the use case
! Use case name: ReportEmergency

♦ Second step: Find the actors
! Generalize the concrete names (�Bob�) to participating actors

(�Field officer�)
! Participating Actors:

" Field Officer (Bob and Alice in the Scenario)
" Dispatcher (John in the Scenario)

♦ Third step: Then concentrate on the flow of events
! Use informal natural language

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Use Case Associations

♦ A use case model consists of use cases and use case
associations
! A use case association is a relationship between use cases

♦ Important types of use case associations: Include, Extends,
Generalization

♦ Include
! A use case uses another use case (�functional decomposition�)

♦ Extends
! A use case extends another use case

♦ Generalization
" An abstract use case has different specializations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

From Use Cases to Objects

Top Level Use Case

A and B
are called

Participating
Objects

Level 1

A B

Level 3 Use CasesLevel 3 Level 3 Level 3

OperationsLevel 4 Level 4

Level 2 Use CasesLevel 2 Level 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Use Cases can be used by more than one object

Top Level Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

Level 2

Level 1

Level 2

Level 3 Level 3

Level 4 Level 4

Level 3

A B

Page 6

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

How to Specify a Use Case (Summary)
♦ Name of Use Case
♦ Actors

! Description of Actors involved in use case)
♦ Entry condition

! �This use case starts when��
♦ Flow of Events

! Free form, informal natural language
♦ Exit condition

! �This use cases terminates when��
♦ Exceptions

! Describe what happens if things go wrong
♦ Special Requirements

! Nonfunctional Requirements, Constraints)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Summary
♦ The requirements process consists of requirements elicitation and analysis.
♦ The requirements elicitation activity is different for:

! Greenfield Engineering, Reengineering, Interface Engineering
♦ Scenarios:

! Great way to establish communication with client
! Different types of scenarios: As-Is, visionary, evaluation and training
! Use cases: Abstraction of scenarios

♦ Pure functional decomposition is bad:
! Leads to unmaintainable code

♦ Pure object identification is bad:
! May lead to wrong objects, wrong attributes, wrong methods

♦ The key to successful analysis:
! Start with use cases and then find the participating objects
! If somebody asks �What is this?�, do not answer right away. Return the

question or observe the end user: �What is it used for?�

