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Abstract. Changes in the normal rhythmicity of a human heart may result in 
different cardiac arrhythmias, which may be immediately fatal or cause 
irreparable damage to the heart when sustained over long periods of time. The 
ability to automatically identify arrhythmias from ECG recordings is important 
for clinical diagnosis and treatment, as well as, for understanding the 
electrophysiological mechanisms of the arrhythmias. This paper proposes a 
novel approach to efficiently and accurately identify normal sinus rhythm and 
various ventricular arrhythmias through a combination of phase space 
reconstruction and machine learning techniques. Data was recorded from 
patients experiencing spontaneous arrhythmia, as well as, induced arrhythmia. 
The phase space attractors of the different rhythms were learned from both 
inter- and intra-patient arrhythmic episodes. Out-of-sample ECG rhythm 
recordings were classified using the learned attractor probability distributions 
with an overall accuracy of 83.0%. 

 
 
1. Introduction 
 
Thousands of deaths occur daily due to ventricular fibrillation (VF)[1].  Ventricular 
fibrillation is a disorganized, irregular heart rhythm that renders the heart incapable of 
pumping blood.  It is fatal within minutes unless externally terminated by the passage 
of a large electrical current through the heart muscle. Automatic defibrillators, both 
internal and external to the body, have proven to be the only therapy for thousands of 
individuals whom experience ventricular arrhythmia.  There is evidence [2] to suggest 
that the sooner electronic therapy is delivered following the onset of VF, the greater 
the success of terminating the arrhythmia, and thus, the greater the chance of survival.  
Defibrillators are required to classify a cardiac rhythm as life threatening before the 
device can deliver shock therapy; the patient is usually unconscious. Because of the 
hemodynamic consequences (i.e., the heart ceases to contract, thus no blood flows 
through the body) that accompany the onset of lethal VF, a preventive approach for 
treating ventricular arrhythmia is preferable, such as low-energy shock, pacing 
regimens and/or drug administration to prevent the fatal arrhythmia from occurring in 
the first place. Furthermore, there is evidence [3] to suggest that high-energy shocks 
delivered during lethal arrhythmia may be harmful to the myocardium.  Thus, the 
ability to quickly identify and/or predict the impending onset of VF is highly desirable 
and may increase the alternate therapies available to treat an individual prone to VF. 



 
Many of the current algorithms differentiate ventricular arrhythmias using classical 
signal processing techniques, i.e., threshold crossing intervals, autocorrelation, VF-
filter, spectral analysis [4], time-frequency distributions [5], coherence analysis [6], 
and heart rate variability [7, 8]. In order to improve frequency resolution and 
minimize spectral leakage, these algorithms need five or more seconds of data when 
classifying the rhythms. This paper proposes that phase space embedding [9] 
combined with data mining techniques [10] can learn and accurately characterize 
chaotic attractors for the different ventricular tachyarrhythmias in short data intervals.   
Others who have used phase space techniques to study physiological changes in the 
heart include Bettermann and VanLeeuwen [11], who demonstrated that the changes 
in heart beat complexity between sleeping and waking states were not a simple 
function of the heart beat intervals, rather the changes in heart beat complexity were 
related to the existence of dynamic phases in heart period dynamics. 
 
In this study, signals from two leads of a normal twelve lead ECG recording [12, 13] 
are transformed into a reconstructed state space, also called phase space. Attractors 
are learned for each of the following rhythms: sinus rhythm (SR), monomorphic 
ventricular tachycardia (MVT), polymorphic ventricular tachycardia (PVT), and 
ventricular fibrillation. A neural net is used to learn the attractors using features 
formed from the two-dimensional reconstructed phase space. Attractors are learned 
and tested from inter- and intra-patient data.  
 
1.1 ECG Recording Overview 
 
An ECG recording is a measure of the electrical activity of the heart from electrodes 
placed at specific locations on the torso. A synthesized surface recording of one 
heartbeat during SR can be seen in Figure 1.  The cardiac cycle can be divided into 
several features. The main features are the P wave, PR interval, QRS complex, Q 
wave, ST segment, and T wave.  Each of these components represents the electrical 
activity in the heart during a portion of the heartbeat [14].  
 

• The P wave represents the depolarization of the atria.  
• The PR interval represents the time of conduction from the onset of atrial 

activation to the onset of ventricular activation through the bundle of His.  
• The QRS complex is a naming convention for the portion of the waveform 

representing the ventricular activation and completion.  
• The ST segment serves as the isoelectric line from which amplitudes of other 

waveforms are measured, and also is important in identifying pathologies, 
such as myocardial infarctions (elevations) and ischemia (depressions). 

• The T wave represents ventricular depolarization.  
 
Recordings seen at different lead locations on the body may exhibit different 
morphological characteristics. Differences in the ECG recordings from one lead to 
another are a result of the electrodes being placed at different positions with respect to 
the heart. Thus the projection of the electrical potential at a point near the sinoatrial 
node would differ from that seen by an electrode near the atrioventricular node. 



Differences in recordings from one person to another may be due to the difference in 
the size of the hearts, the orientation of the heart in the body, exact lead location, and 
the healthiness of the heart itself. 
 

 
Figure 1 – Synthesized ECG recording for one heartbeat. 

 
2. Methods 
 
2.1 Recordings 
 
Simultaneous recordings of surface leads II and V1 of a normal 12 lead ECG [12, 13] 
were obtained from six patients using an electrophysiological recorder. These patients 
exhibited sustained monomorphic ventricular tachycardia, polymorphic ventricular 
tachycardia, ventricular fibrillation and/or any combination of these rhythms during 
electrophysiological testing (EP) and/or automatic implantable 
cardioverter/defribrillator (AICD) implantation.  None of the data was from healthy 
patients. 
 
Two independent observers classified the ECG recordings as one of the following 
rhythms: VF, PVT, MVT, and SR. The criteria for classifying of the different rhythms 
were [15-17]: 
 

• VF was defined by undulations that were irregular in timing and morphology 
without discrete QRS complexes, ST segments, or T waves with cycle length 
< 200 msec. 

• PVT was defined as ventricular tachycardia having variable QRS 
morphology but with discrete QRS complexes with cycle length < 400 msec. 

• MVT was defined as ventricular tachycardia having a constant QRS 
morphology with cycle length < 600 msec. 

• SR was defined by rhythms exhibiting P waves, QRS complexes, ST 
segments, and T waves with no aberrant morphology interspersed in the data 
interval.  

 
Ventricular tachycardia is most commonly associated in patients with coronary artery 
disease and prior myocardial infarctions.  Patients with dilated cardiomyopathies, 
arrythmogenic right ventricular dysplasia, congenital heart disease, hypertrophic 
cardiomyopathy, or mitral valve prolapses experience VT.  Infrequently VT occurs in 
patients without identifiable heart abnormalities[18].  Ventricular fibrillation occurs 



primarily in patients with transient or permanent conduction block.  Patients 
experience VF under a variety of conditions, including: 1) electrically induced by a 
low-intensity stimulus delivered while the ventricles are repolarizing; 2) electrically 
induced by a burst (approximately 1 second duration) of 60 Hz AC current; 3) 
spontaneously induced due to ischemia leading to a conduction block; 4) reperfusion-
induced; and 5) electrically induced by high-intensity electric shocks[16]. 
 
Examples of the different rhythm morphologies can be seen in Figure 2. 
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Figure 2 – Recording for individual examples of rhythm morphologies: monomorphic 
ventricular tachycardia (MVT), polymorphic ventricular tachycardia (PVT), ventricular 
fibrillation (VF), and sinus rhythm (SR).   

 
2.2 Preprocessing 

 
Data were antialiased filtered with a cutoff frequency of 200 Hz and subsequently 
digitized at 1,200 Hz. Up to 60 seconds of continuous data were digitized for each 
rhythm. In this study, the data was divided into 2.5-second contiguous intervals of 
MVT, PVT, VF or SR rhythms. The data were zero-meaned prior to further analysis. 
 
2.3 Feature Identification 
 
A two-dimensional phase space was constructed using the II and V1 ECG recordings. 
Figure 3 illustrates the generated phase space. 
 
Each rhythm is attracted to a different subset of the phase space. This subset of the 
phase space is the attractor for that particular rhythm. Visually, one can differentiate 
the rhythm attractors in Figure 3. However, for an automatic defibrillator to 
automatically classify rhythms, features must be determined that define each attractor. 
These features were generated using the following method. 

 



Psuedo Code of Feature Identification
Combine all lead II training intervals
Take histogram of combined signals
Determine boundary values that separate the

combined data into 10 equally filled bins
(each bin contains ~10% of data)

Repeat for lead V1
Using boundaries for each lead, create 100 regions

in the phase space.
For each individual training interval
Determine percentage of data points in each region
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Figure 3 – Generated two-dimensional phase space for examples of MVT, PVT, VF, and SR.  
Notice that the different rhythms fill a different subset of the phase space. 

 
An example of the regions subdividing the phase space for an SR rhythm can be seen 
in Figure 4. 
 
2.4 Attractor Learning 
 
The attractors were learned using neural networks with 100 inputs, one output, and 
two hidden layers. The first and second hidden layers consisted of 10 and 3 neurons 
with tan-sigmoid transfer functions, respectively. The output layer was a log-sigmoid 
neuron. The neural net was learned using the Levenberg-Marquardt algorithm in 
MATLAB. The inputs to the neural networks were the percentage of data points in 
each feature bin described in previously. Leave-one-out cross-validation [19] was 
used in the training and testing of the neural networks. Given an indexed data set 
{ }nidi ,,1: K=  containing n elements, n training/testing runs are performed. For the 
jth run, the test set is { }jd  and the training set is { }jidi ≠∀: . 



 
Individual neural networks were used to classify each rhythm. The output of the 
neural net was rounded, in order that 1 classified the input data as the specific rhythm, 
0 classified it as some other rhythm. For a patient exhibiting two different 
morphologies, two neural networks would be trained and tested to classify the ECG 
intervals. An example of the classifier architecture for Patient 2 can be seen in Figure 
5. To be a legitimate classification, only one neural network can classify the signal. 
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Figure 4 – Example of feature bin boundaries for a 2.5 second recording of sinus rhythm. 
 
2.5 Comparative Analysis 
 
We compare our new method against three others. The first comparison is to a method 
based on the Lempel-Ziv complexity measure. The second comparison is to a method 
based on heart rate. The third comparison is to two independent human expert 
observers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Zhang et al. [20] proposed a method for detecting MVT, VF, and SR using the 
Lempel-Ziv complexity measure. The complexity measure is a function of the number 
of patterns found in a string of threshold crossings. For each interval of data, a new 
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Figure 5 – Classifier architecture. The number of rhythm neural nets corresponds to the
number of rhythms for a particular set of data.  For sets of data with more than two rhythms to
classify the XOR box is more complicated than a single exclusive OR. 



threshold was calculated. As with the method proposed in this paper, Zhang’s 
complexity measure does not need to detect the occurrences of beats. They used 
various interval lengths to determine the minimum amount of data needed to attain 
100% training accuracy; no test accuracy was determined.  A seven second interval 
was found to be the minimum length needed to correctly discriminating the three 
rhythms.  For the rhythms (MVT, VF, and SR), intervals of length two and three 
seconds achieved training accuracies of (93.14%, 95.10%, and 98.04%) and (93.14%, 
97.55%, and 95.59%), respectively. Zhang classified the rhythms using the following 
cutoff values for the complexity measures: 
 

• SR – for complexity measures less than 0.150 
• MVT – for complexity measures between 0.150 and 0.486 
• VF – for complexity measures greater than 0.486. 
 

Heart rate is used in many AICDs to discriminate one rhythm from another.  
Medtronic, Inc. a commercial maker of AICDs uses rate detection zones and different 
counts to detect and classify tachyarrhythmias [17]. AICDs count the number of beats 
in each detection zone, if a specified number of beats are within a particular zone 
without a SR rhythm beat being detected, the interval is marked as a tachyarrhythmia.  
Since the data intervals used are only two and half seconds long, there are not enough 
beats to be counted, so only the heart rate is used to classify the rhythm intervals.  For 
each individual interval, thresholds for marking a new beat were set to 60% of the 
maximum amplitude of that interval.   
 
 
3. Results 
 
3.1 Data 
 
Six patients comprised the study population. The heart rhythms exhibited by the six 
patients can be seen in Table 1. Four of the patients exhibited different combinations 
of two or three types of rhythms. The last two patients exhibited all four types of 
rhythms. Two independent observers performed the original rhythm classification.  
 
Table 1 - Patient and Number of 2.5s Rhythm Intervals Experienced 

Patient MVT PVT VF SR 
1   23 27 
2  6 12  
3  23  30 
4 15 8 4  
5 15 8 2 33 
6 20 6 5 34 

 
Overall inter-observer agreement for rhythm classification was 80.7%. The two 
observers conferred to reach consensus on the classification of the remaining 19.3%.  
The intervals used in this study were not meticulously selected to have comparable 



amplitudes, waveforms, and heart rates.  The intervals were selected blindly from 
rhythms classified by the two observers. 
 
3.2 Intra-Patient Classification 
 
For each patient, classifiers were created for each rhythm interval. The neural nets in 
the classifiers were able to learn the training data within approximately 20 epochs 
with 100% accuracy, with leave-one-out cross-validation. For the training data, the 
classifiers accurately identified rhythm type from 69.8% to 83.3% of the time with an 
overall average accuracy of 77.1%. The accuracy for each patient’s classifier is listed 
in Table 2. Each classifier had four possible outputs: 
 

• Correctly Classified – 2.5-second rhythm interval was classified correctly. 
• Incorrectly Classified – 2.5-second rhythm interval was classified as a 

different rhythm. 
• Undetermined (no classification) – 2.5-second rhythm interval was not 

classified. 
• Undetermined (two classifications) – 2.5-second rhythm interval was 

classified as two rhythms (It should be noted that no rhythm interval was 
classified as more than two rhythms.) 

 
Table 2 - Intra-Patient Classifier Accuracy 

 
Patient Correctly 

Classified 
Incorrectly 
Classified 

Undetermined 
(No  

classification) 

Undetermined 
(2 

classifications) 

Percent 
Accuracy 

1 41 1 2 6 82.0% 
2 15 0 2 1 83.3% 
3 37 3 8 5 69.8% 
4 21 2 1 3 75.0% 
5 44 5 3 6 75.8% 
6 51 1 5 8 78.5% 

 
3.4 Inter-Patient Classification 
 
All 271 data segments from the six patients were combined and classified. The 
training data was learned with 100% accuracy within approximately 30 epochs. 
Leave-one-out cross-validation was performed. The accuracy of classifying the 271 
rhythm intervals was improved compared to the intra-patient classification accuracy. 
The classification accuracy for the 271 intervals was 83.0%, with the following 
breakdown of classification: 
 

• 225 were correctly classified. 
• 12 were incorrectly classified. 
• 11 were undetermined due to no classification. 
• 23 were undetermined due to two or more classifications (only one interval 

was classified as three separate rhythms). 
 



The confusion matrix for the proposed method is given in Table 3. Recall because of 
the structure of the proposed classifier, a data interval may be under (no 
classification) or over (two or more classifications) classified, hence the total 
classifications in Table 3 is not 271. 
 
Table 3 – Confusion Matrix for Phase Space Classification Method 

 Classified As Valid  
 SR MVT PVT VF Classification Accuracy 

SR 117 1 7 6 109 87.9% 
MVT 1 47 5 0 42 84.0% 
PVT 3 4 45 2 39 76.5% 
VF 2 0 6 38 35 76.1% 

 
3.5 Complexity Measure Inter-Patient Classification 
 
Using the complexity measure algorithm from [20], the complexity measure for each 
interval was calculated.  The distributions of the measures for the different rhythms 
are shown in Figure 5.  It can be seen in the graph that unlike Zhang’s training results 
there is no distinct separation between complexity measures of the different rhythms; 
nor were the values attained using this data within the same ranges as those 
determined by Zhang.  The results are extremely poor as seen by the accuracies given 
in Table 4. 

Table 4 – Confusion Matrix for Complexity Measure Classification 

 Classified As  
 SR MVT PVT VF Accuracy 
SR 116 8 0 0 93.5% 
MVT 50 0 0 0 0% 
PVT 51 0 0 0 0% 
VF 38 8 0 0 0% 
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Figure 6 – Complexity Measure Distribution for the all four Rhythm Types 



3.6 Heart Rate Inter-Patient Classification 
 
Classification using the heart rate had an overall accuracy of 62%.  Misclassifications 
occurred in all rhythm intervals.  The MVT intervals had the worst accuracy.  The 
classification using heart rate can be seen in Table 5. 
 
Table 5 – Confusion Matrix for Heart Rate Classification 

 Classified As  
 SR MVT PVT VF Accuracy 
SR 83 38 3 0 66.9% 
MVT 0 11 20 19 22.0% 
PVT 0 0 40 11 78.4% 
VF 0 1 1 44 95.6% 

  
 
4. Discussion 
 
Ideally, an implantable antitachycardia device should be capable of several modes of 
therapy including antitachycardia pacing, low-energy cardioversion, and high-energy 
defibrillation [21-23]. Patients requiring these types of therapy often experience more 
than one rhythm type. These different arrhythmias may require different therapies. 
However, for the several modes of therapy to be available in one device, detection 
algorithms must be able to accurately differentiate among various arrhythmias. The 
results from this preliminary study are encouraging for developing accurate detection 
algorithms among the various ventricular tachyarrhythmias. The ability to accurately 
classify rhythms experienced by individual patients more than 75% of the time is in 
close agreement with the classification of trained observers. The classification 
accuracy across all patients was better for the automated scheme than for the original 
classification by trained observers. The classification performed using the complexity 
measures of the rhythms was extremely poor.  It is obvious that Zhang’s threshold 
values are not generalizable. Even if new threshold values were determined for our 
data set, their classification method would perform poorly as can be seen in Figure 6 
by the strong overlapping of the classes.  
 
Using the reconstructed phase space to classify out-of-sample ECG recordings 
performed better than the classification using the heart rate alone.  This is due to 
several reasons. The first and foremost was part of the new algorithm’s advantages is 
the ability to classify ECG rhythms in only 2.5 seconds.  Most ICDs require 10 
seconds to classify a tachyarrhythmia.  Many of the commercial detection algorithms 
also allow the medical provider to determine templates for the patient’s SR.  As these 
were out-of-sample intervals no templates could be generated.  Thus the detection of 
heartbeats ranged drastically from one interval to the next.  Secondly, as stated 
previously, the morphology seen in an ECG recording is a function of the healthiness 
of the heart.  And as each of these rhythms was recorded during electrophysiological 
testing (EP) and/or automatic implantable cardioverter/defribrillator (AICD) 
implantation, none of these hearts can be considered extremely healthy.  Thus 
individual rhythms greatly vary from one patient to the next.  For example in SR, one 



patient had T-waves whose amplitudes were as large as the QRS.  The T-waves were 
counted as a new heartbeat, thus doubling the calculated heart rate. Finally, even 
though the data was zero-meaned linear trends were not removed from the intervals, 
thus fewer beats were counted. 
 
Although the proposed method was accurate 83% of the time, if used in AICDs in its 
current form, the misclassification of SR and MVT as VF could cause a patient to 
receive an unnecessary defibrillation shock which has the possibility of being 
detrimental to the patient.  Some of these false classifications were due to SR intervals 
in which the maximum amplitude of the signal was not very large, thus the phase 
space reconstruction of these non-fatal rhythms was very close to that of VF. Further 
improvement is still needed before these short intervals can be used in commercial 
applications, such as the development of multi-therapy implantable antitachycardia 
devices.  The high classification accuracy of the proposed method within a short 
period of time reinforces the author’s conjecture that phase space is a valid starting 
point in the classification of ventricular tachyarrhythmias. Other features will need to 
be added to the proposed method to improve the classification accuracy for short 
intervals of data. Further investigations for defining the rhythm attractors will 
incorporate time-delay and multi-dimensional phase spaces. 
 
Future research into the identification of ventricular tachyarrhythmias may unveil 
electrophysiological mechanisms responsible for the onset and termination of 
fibrillatory rhythms.  We hypothesize that the patterns of the quasi-periodic [24] 
attractors of heart rhythms change immediately prior to (within a 10-minute time 
period) the onset of a serious ventricular arrhythmia. Using these attractors, future 
research will focus on the transitions from one phase space attractor to another. This 
may reveal how changes in the attractor space correspond to heart rhythm changes, 
with the end goal being able to predict the onset of VF, thus improving available 
therapy and prevention.  
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