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Abstract 
 

Novel speech features calculated from third-order statistics of subband-filtered 
speech signals are introduced and studied for robust speech recognition. These 
features have the potential to capture nonlinear information not represented by 
cepstral coefficients. Also, because the features presented in this paper are based on 
the third-order moments, they may be more immune to Gaussian noise than 
cepstrals, as Gaussian distributions have zero third-order moments. Preliminary 
experiments on the AURORA2 database studying these features in combination 
with Mel-frequency cepstral coefficients (MFCC’s) are presented, and improvement 
over the MFCC-only baseline is shown with the combined feature set for several 
noise conditions. 

 
 
1. Introduction 

 
Spectral-based acoustic features have been the standard in speech recognition for many 
years, even though they are based on limiting assumptions of the linearity of the speech 
production mechanism [1]. Specifically, mel-frequency cepstral coefficients (MFCC), 
which are calculated using a discrete cosine transform on the smoothed power spectrum, 
and perceptual linear prediction (PLP) cepstral coefficients, similar to MFCCs, but based 
on human auditory models, are used in almost all state-of-the-art speech recognition 
systems [1]. While these feature sets do an excellent job of capturing linear information of 
speech signals, they do not encapsulate information about nonlinear or higher-order 
statistical characteristics of the signals, which have been shown to exist, and are not 
insignificant [2-4]. 

As successful as MFCCs have been in the field of speech recognition, 
performance of state-of-the-art systems remains unacceptable for many real applications. 
One of the largest failings of popular spectral features is their poor robustness in the face 
of ambient noise. Many environments in which automatric speech recognition 
applications would be ideal have large amounts of background additive noise that makes 
voice-activated systems infeasible. In this paper, we introduce acoustic features based on 



higher-order statistics of speech signals. It is shown that these features, when combined 
with MFCC’s, can produce higher recognition accuracies in some noise conditions.  

The rest of the paper is as follows. Section 2 gives some background on robust 
speech recognition and nonlinear speech recognition. In section 3, computation of the 
proposed features is detailed. Experiments comparing the feature sets including the third-
order moment features and MFCCs are presented in section 4, and are followed by the 
conclusion and discussion of continuing work for the final paper in section 5. 
 
2. Background 
 
2.1 Robust Speech Recognition 
 
Robust speech recognition research has focused on subjects such as perceptually 
motivated features, signal enhancement, feature compensation in noise, and model 
adaptation. Perceptual-based features include PLP cepstral coefficients [5] and perceptual 
harmonic cepstral coefficients (PHCC) [6], which have been shown to be more robust 
than MFCCs in the presence of additive noise. Signal enhancement and feature 
compensation include techniques like spectral subtraction [7] and iterative wiener filtering 
[8], as well as more advanced algorithms such as SPLICE (stereo-based piecewise linear 
compensation in environments) [9]. While these techniques focus on adapting the 
extracted features, model adaptation methods such as MLLR and MAP [10] attempt to 
adjust the model parameters to better fit the noisy signals.  
 Though some progress has been made, the performance of speech recognition 
systems in noisy environments is still far from acceptable. Word error rates for a standard 
large vocabulary continuous speech recognition (LVCSR) task like recognition of the 
5,000 word Wall Street Journal corpus can drop from under 5% to over 20% when 
Gaussian white noise is added at a signal-to-noise-ratio (SNR) of +5dB, even with 
compensation techniques [9]. Even continuous digit recognition word error rates often 
exceed 10% when faced with high noise levels [11].  
 
2.2 Nonlinear Features for Speech Recognition 
 
Recently, work has been done to investigate the efficacy of various feature sets based on 
nonlinear analysis. Dynamical invariants based on chaos theory [12], such as Lyapunov 
exponents and fractal dimension have been used to augment the standard linear feature 
sets [13], as well as nonlinear polynomial prediction coefficients [14]. In [15], an AM-FM 
model of speech production is exploited for extraction of nonlinear features. Also, Phase 
space reconstruction has been used for statistical modeling and classification of speech 
waveforms [16].  
 In [17], reconstructed phase spaces built from speech signals that have been 
subband filtered were used for isolated phoneme classification, showing improved 
recognition accuracies over fullband signal phase space reconstruction features. However, 



this approach is infeasible for continuous speech recognition because of its high 
computational complexity. In this paper, nonlinear features from subbanded speech 
signals that are much simpler to compute are introduced. 
 
3. Third-order Moment Feature Computation 
 
An approach based on time-domain filtering of speech signals is taken for computation of 
the nonlinear features. An utterance is parameterized by first filtering the signal into P 
subbands that have cutoffs and bandwidths derived from the Mel-scale. Each of these 
signals is then broken into frames with lengths of 25.6 ms, updated every 10 ms. The 
third-order moment of the signal amplitudes of each of these channels is calculated for 
each frame, and the set of these coefficients form a feature vector. Log energy of the 
unfiltered signal frame is appended to these features, which are then orthogonalized using 
a principle component analysis (PCA). In the experiments presented in this paper, 20 filter 
channels are used, and the PCA reduces the dimension third-order moment feature space 
to 13. 

Because much of the information that distinguishes speech sounds is contained in 
the power spectrum, it is not expected that these features by themselves would carry 
enough information to compete with MFCC features. Therefore, the proposed features are 
appended to the baseline MFCC feature vector for modeling and recognition of speech. 
 There are two advantages to this approach. First, nonlinear information that may 
be useful for recognition that is not captured by traditional features is added to the 
recognizer. Also, because some types of noise have approximately Gaussian statistical 
distributions, and Gaussian distributions have zero third-order moments, the proposed 
features my be less affected by additive noise than MFCC’s. This conjecture is tested by 
comparing a combined feature set of MFCC’s and the proposed features to a baseline 
feature set of only MFCC’s for use in noisy speech recognition. 
 
4. Experiments 
 
The preliminary recognition experiments are run using the AURORA2 database [18]. This 
corpus contains utterances of connected digits corrupted with different types and levels of 
noise. There are eleven words: the digits zero through nine and “oh”. All models were 
trained using clean speech signals only, and tested on test set A, which contains four 
different types of noise at varying SNR levels. HTK [19] is the software used for 
experimentation. Each word is modeled using a 16-state left-to-right diagonal covariance 
Hidden Markov Model (HMM). Additionally, a 3-state silence model and single-state 
short pause model are implemented. The frame rate is 10 ms, with frame lengths of 25.6 
ms. 
 Two types of feature sets are used. The basline feature vector is a 39-element 
vector of 12 MFCC’s, log energy, and the first and second time derivates. The second 



feature set is a 52-element vector composed of the 39-coefficient MFCC vector 
concatenated with 13 coefficients from the PCA of the third-order moment space.   
 Figures 1-4 show the recognition accuracies for the two feature types on the four 
different noise types of AURORA’s test set A. These noises are subway, babble, car 
noise, and exhibition hall, respectively. The accuracies are plotted against the SNR levels, 
ranging from 0 to 20 dB. It can be seen that, except for the babble noise case, the MFCC-
only features give better recognition accuracies at 20 dB SNR. The MFCC and third-order 
moment concatenation feature vector, however, outperforms the MFCC-only set in most 
of the lower SNR cases. 
 

 
Figure 1. Recognition accuracies for speech corrupted by subway noise 

 
Figure 2. Recognition accuracies for speech corrupted by babble noise 



 

Figure 3. Recognition accuracies for speech corrupted by car noise 

 
Figure 4. Recognition accuracies for speech corrupted by exhibition hall noise 

 
5. Conclusion 
 
A new type of acoustic feature extraction method was presented based on higher-order 
statistics of suband filtered speech signals, and preliminary experiments show that the 
combination of these features with MFCC’s can improve the robustness of speech 
recognition systems in some noise conditions. Given the assumptions of the robustness of 
the proposed features to Gaussian type noise, it is surprising that the noise type that 



showed the largest improvement over the baseline is babble noise, which is not likely very 
Gaussian in nature. The reasons for this improvement will be examined further. 
 For the final version of this paper, more experimentation studying the affect on 
recognition accuracy of the number of third-order coefficients used and possible multi-
stream combination of the features will be executed. Based on the results presented here, 
it may be beneficial to adaptively weight the two feature types based on the type of noise 
and SNR level. 
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