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Abstract—This paper introduces a novel approach to the anal-
ysis and classification of time series signals using statistical models
of reconstructed phase spaces. With sufficient dimension, such
reconstructed phase spaces are, with probability one, guaran-
teed to be topologically equivalent to the state dynamics of the
generating system, and, therefore, may contain information that
is absent in analysis and classification methods rooted in linear
assumptions. Parametric and nonparametric distributions are
introduced as statistical representations over the multidimen-
sional reconstructed phase space, with classification accomplished
through methods such as Bayes maximum likelihood and arti-
ficial neural networks (ANNs). The technique is demonstrated
on heart arrhythmia classification and speech recognition. This
new approach is shown to be a viable and effective alternative
to traditional signal classification approaches, particularly for
signals with strong nonlinear characteristics.

Index Terms—Reconstructed phase spaces (RPSs), signal classi-
fication, statistical models.

I. INTRODUCTION

WE present this new approach based on reconstructed
phase spaces (RPSs) as an alternative to traditional

linear approaches to signal analysis and classification, which
are typically based on frequency domain characteristics. The
underlying assumption of traditional linear methods is that the
salient information about signal characteristics is contained
in the frequency power spectrum. From a stochastic process
perspective, the first- and second-order statistics of the signal
are represented by this power spectral information.

However, there are many types of signals, both theoretical
and experimental, for which a frequency domain representation
is insufficient, because it is generally not possible to distinguish
between signals that have the same power spectra but differing
phase and/or higher order spectra. For example, signals gener-
ated through nonlinear differential or difference equations typ-
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Fig. 1. Signals, broadband power spectra, and reconstructed phase spaces for
two examples.

ically exhibit broadband power spectral characteristics that are
difficult to interpret, because the spectra do not contain sharp
resonant peaks. An illustrative example of two signals that are
indistinguishable using power spectral classification methods
are seen in Fig. 1. The first signal in Fig. 1 is the logistic map

, with . The second is the logistic
map’s FT surrogate, which maintains the signal’s Fourier trans-
form amplitude, but randomizes the phase [1].

Fig. 1 provides a graphical motivation for the signal analysis
and classification approach presented in this paper. Signal
classification techniques based on power spectral information
can not distinguish between different signals that have the same
power spectrum, but such signals may be distinguishable in
a RPS. Additionally, the underlying theory, outlined in more
detail in Section III, guarantees that the dynamics of any system
are fully described by a RPS generated from any single state
variable, provided that the dimension of the RPS is greater
than twice the box counting dimension of the original system
[2]. From a practical perspective for discrete-time signals, this
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means that a RPS, which is a multidimensional plot of the time
series signal against time-delayed versions of itself, contains
all the information of the underlying system [3].

The particular models used here are statistical distributions
that can be learned over RPSs and then used to classify un-
seen signals. Both nonparametric distributions based on bin-
ning and occurrence counts and parametric distributions based
on Gaussian mixture model (GMM) distributions are illustrated.
Two types of classifiers are applied: a Bayes maximum likeli-
hood classifier and an artificial neural network (ANN) classifier.

Thus, the proposed approach is particularly suited for differ-
entiating between signals where the phase of the signal contains
important differentiating information, because such differenti-
ating phase information is captured by the RPS, or where the
state structure captured by the RPS reveals state variables and
relationships between state variables that provide greater differ-
entiability across classes than the original state variable by itself.

The new approach is applied to two domains—distinguishing
heart arrhythmia and speech phoneme classification. The results
from these two applications show that this new approach can be
applied to a variety of signal classification problems.

Previous work in signal classification is discussed in
Section II. Background of the underlying dynamical system’s
theory is given in Section III, with detailed descriptions of
the distribution models, learning algorithms, and classification
techniques in Section IV. Section V discusses the experimental
setup and results, with conclusions in Section VI.

II. PREVIOUS WORK

In addition to the traditional signal analysis models based
on spectrum amplitude such as autoregressive modeling [4] or
cepstral analysis [5], there is also a large body of work on signal
detection and classification in the field of communications [6],
based on statistical decision theory. These methods are founded
on the existence of an a priori underlying transmission or
symbol model that can be used to analytically determine closed
form conditional distributions for each signal class and derive
a maximum likelihood detector. In the case of arbitrary signal
classification, with complex underlying systems such as heart
rhythms and speech, such complete time-domain signal models
do not exist. The general approach to classification for these
systems is based on machine learning principles, using prepro-
cessing to identify relevant features for classifier models, rather
than a symbol-based time-domain representation.

Most research in using RPSs focuses on estimating dynam-
ical invariants, which are not sensitive to initial conditions or
smooth transformations of the space. These invariants may be
classified into three categories: metric (Lyapunov exponents and
dimension), natural measure (density) [7], and topology. Var-
ious methods of estimating dimension have been proposed, such
as correlation dimension [8], minimum phase space volume [9],
and box counting [7]. Density estimation techniques are typ-
ically histogram [10], [11] or GMM [12] based. Topological
analysis techniques include templates [13] and global vector
field reconstruction [14].

Dynamical systems methods have been used in many appli-
cations. Lyapunov exponents have been used for classifying

signals as chaotic [14] and as additional features for speech
recognition [15]. Fractal dimension, Richardson dimension,
Lempel-Ziv complexity, and Hurst exponent have been used
as features for classifying simulated and beta emission signals
[16]. Estimates of dimensions have been used to analyze speech
[17] and heart rate variability [18]. However, estimation of
metric invariants is highly sensitive to noise and sample size.
Without large sample sizes and the use of nonlinear filtering
techniques, their estimations are suspect [19].

Topological analysis techniques such as templates [13] have
been applied to simulated chaotic systems [20], voltage [20],
and laser [21] time series. Global modeling techniques have
been applied to the computation of Lyapunov exponents [14]
and biological signal classification [22]. The topological anal-
ysis approach fits a functional model to the attractor. This ap-
proach is seen in [22].

However, there is relatively little literature directly applying
RPSs to classification. Our approach differs from metric-based
approaches by modeling the density of the RPS directly
instead of calculating a measure of an average trajectory di-
vergence (Lyapunov exponents) or estimating the dimension.
The work presented here develops statistical features of RPSs,
whereas topological analysis approach builds global vector
reconstructions.

III. PHASE SPACE RECONSTRUCTION THEORY

The basis of this approach is that given access to the state
structure of a system, a classification of such systems can be
developed. We start by presenting a theoretical construct of the
problem. Given a finite-dimensional system state space and

, the dynamics of the system, a system is described
by the pair . We then define a set of all possible dy-
namics on with a topology . Without loss of generality, we
assume to be -dimensional, because given any ,

can be replaced by . The system classification then
becomes one of partitioning according to the requirements of
the classification problem with a particular dynamics identi-
fied with a particular partition such that , where

, .
The problem for real world systems is how to gain access

to and represent for a particular system. The approach used
here is phase space reconstruction, also known as phase space
embedding, and was first proposed in [23]. The methods for
representing , which are the contributions of this work, are
presented in the following section.

The central premise is that a space and its associated dy-
namics, which are topologically equivalent to the original
system space and its dynamics , can be recovered or
unfolded from a time series of observations of a single state
variable for the original system .

Whitney showed that an -dimensional topological space can
be embedded in [24], where an embedding is a homeo-
morphic mapping from one topological space to another. Takens
[3] showed that it is a generic property that the map

defined by

(1)
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is an embedding, where is an -dimensional state space,
is a twice continuously differentiable diffeomorphism

that describes the dynamics of the system, and
is a twice continuously differentiable function representing the
observation of a single state variable.

Working from these original theorems, Sauer and Yorke [2]
extended Takens’ work by showing that almost every time-delay
map is an embedding, indicating that except for a set
of degenerate cases with measure zero, the topological equiv-
alence property is guaranteed. Therefore, these theorems guar-
antee that for almost every time delay embedding, the recon-
structed dynamics of such a map are topologically identical to
the true dynamics of the system [2]. In addition, they found a
tighter bound on the required dimension as , where
is the boxcounting dimension of the attractor of the underlying
system.

In other words, we have a mechanism for obtaining a con-
tinuous, one-to-one, and onto transformation from to

, where and is the trajectory matrix defined
as follows. Given a time series , , a se-
quence of state variable observations, a trajectory matrix of
dimension and time lag is defined as

...
...

. . .

(2)

where each row vector in the matrix represents a single point in
the space;

(3)

where . A row vector is a point in
the RPS. The pattern traced out by in is typically referred
to as an attractor, even when the technical definition of an at-
tractor is not formally met. We adopt this terminology.

Recall, that the system/signal classification problem in this
work is addressed by transforming a signal from a particular
system into a RPS, which has a mathematical correspondence
with the underlying system. Therefore, given , the collection
of all possible RPSs , the system/signal classification problem
is to define a partition of such that and a mechanism
for identifying a particular with a particular .

As is discussed next, a statistical machine learning approach
is taken for defining the partition and for identifying an with
a . In general, the classification accuracy will depend on how
well the model of a partition of characterizes the signals
that are labeled as belonging to that partition and how different
the model of is from the models of other partitions.

IV. METHODS

As aforementioned, the approach adopted here is based on
direct statistical modeling of the RPS, through the estimation
of a joint probability density function over that space. Both dis-
crete nonparametric and continuous parametric distributions are

implemented. There are three main steps to applying the new
methods. The first step, data analysis, is to determine the time
lag and embedding dimension of the RPS and compensate for
any nonstationarity of the observation function. The second step
is to generate statistical models of the attractors. This is done
using both discrete and continuous models. The final step is to
build classifiers.

A. Data Analysis

To construct a RPS from a signal, the dimension of the RPS
and the time lag at which to sample the signal must be selected.
Although proper selection of dimension and time lag may ap-
pear to be critical to the success of the methods presented in
this paper, in practice the methods presented here are effective
across a range of dimensions and time lags. In addition, existing
methods for choosing time lag, such as the first minimum of the
automutual information function or the first zero crossing of the
autocorrelation [25], dimension, such as false nearest neighbor
[26] or Cao’s method [27], or both [28], [29] do not optimize
to classification accuracy. Hence, they provide only a first es-
timate of appropriate time lags and dimensions. Thus, as pro-
posed in [12], the mode of distribution of the first minimum of
the automutual information function across all signals is used as
an initial estimate of the time lag. Similarly, the mean plus two
standard deviations of the distribution of false nearest neighbor
dimensions across all signals is used as an initial estimate of the
dimension. We show that the best empirical time lag and dimen-
sion may differ from the initial estimate in Section V.

Recall from (1) that is a twice continuously
differentiable function representing the observation of a single
state variable. For many applications, the gain of this function is
not controlled across and sometime within signals. For the heart
arrhythmia example presented in Section V, baseline wandering,
where the mean of the signal changes when the electrical sensor
is physically disturbed, is a problem. For both datasets, the gain
varies across signals. Thus, a mechanism is needed to compen-
sate for a time varying observation function. The type of com-
pensation will depend on the nature of the observation function.
For example, the electrocardiogram (ECG) signals can be low
pass filtered to remove baseline wandering and standardized in
the time domain as follows: .

The next step is to form the RPSs as specified by (2) for sta-
tistical modeling. When a Bayes classifier is used, the training
signals are used to form RPSs for each class by appending in a
column fashion the ’s formed from the signals belonging to
that class. This enables statistical models for each class to be
learned. When the ANN classifier is used, all training signals
are used to form a single RPS. This enables a consistent set of
features to be extracted for training the ANN.

B. Statistical Models

The use of histograms as an estimate of the discrete prob-
ability mass function (pmf) of the attractor is straightforward.
The space is divided into bins and occurrence counts in each
bin over the training examples, divided by the total number
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Fig. 2. Bin-based distribution modeling (100 bins).

of points, provide a direct estimate of the posterior probability
within each bin

(4)

Given in bin , the posterior probability for is .
In order to improve the reliability of the pmf estimate, it is

desirable to establish a binning system that more accurately
reflects the underlying distribution. The distribution of points
throughout the phase space is nonuniform; therefore, nonuni-
formly spaced bins are used. Fig. 2 illustrates the nonuniformly
spaced bins. A two-step process is used to form the bins. First,
along each dimension a set of intercepts is computed such
that in that dimension the histogram formed by the intercepts
is uniform. The outlying bins of this one-dimensional (1-D)
histogram extend to infinity. Second, the higher-dimensional
bins are form as hypercubes whose boundaries are formed by
the intercepts determined in the first step. In forming a RPS for
a signal of reasonable length, the intercepts are approximately
the same in each dimension. Fig. 2 illustrates, as an example,
the case of a 2-D RPS with nine intercept values per dimension,
which forms a 10 by 10 bin mass function over the entire space.

Disadvantages of the bin-based system include an exponen-
tially increasing number of bins as RPS dimension increases and
fixed bin boundaries. Thus, a GMM, which has soft boundaries
and does not necessarily require an exponential number of mix-
tures with respect to RPS dimension, is studied. The probability
of is

(5)

where is the number of mixtures, is a normal
distribution with mean and covariance matrix , and
is the mixture weight. With the constraint that , a
GMM is a probability model that can accurately reflect a wide
range of distributions with arbitrary precision given enough
mixture components.

Fig. 3. GMM-based distribution modeling (16 mixtures).

Given training data, the parameters for the GMM can be es-
timated using the well-known Expectation-Maximization (EM)
algorithm [30]. The number of mixtures is determined em-
pirically, but is robust across a range of mixture components
as shown in Section V. A visualization of a GMM is shown in
Fig. 3, where the principle axes of the ellipses indicate the one
standard deviation of each mixture in the model.

Both the GMM and bin-based approaches require exponen-
tial increases in model complexity to effectively model arbitrary
feature spaces as the dimensionality of such feature spaces is
increased. Because of the structure and hard bound boundaries
of the bin-based model, it suffers from these scalability issues
when applied to a RPS, because it models the whole space. The
GMM approach is not completely immune to scalability prob-
lems, but it does provide two features in dealing with scalability
that the bin-based approach does not. First, through the use of
EM, the GMM model more accurately models the distribution
of points in the RPS, i.e., it models the attractor. An example of
this is illustrated in Fig. 3. Second, if the number of mixtures is
held constant, a GMM increases linearly in complexity as the
RPS dimension is increased.

C. Classifiers

To use either the binning or GMM models for signal clas-
sification, training data from several different types of signals
are normalized, embedded, and the selected statistical model
is learned. We have used two classifiers: a Bayesian maximum
likelihood and an ANN [31].

Bayes classification of a new test signal is accomplished by
computing the conditional likelihoods of the signal under each
learned model and selecting the model with the highest likeli-
hood. The likelihoods are computed on a point-by-point basis
from the learned attractor models

(6)
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where is the th class. As aforementioned, attractor models
are learned for each class individually. Thus, for the bin-based
method each class has its own set of intercepts with corre-
sponding probability mass functions, while for the GMM each
class has unique mixture means and variances with corre-
sponding cluster weights.

The use of ANNs as a classifier requires that a set of fea-
tures be extracted from the learned statistical model. This is
done by using all training signals to form a single RPS. This
enables a consistent set of features to be extracted for training
so that there is a common set of intercepts in the case of bins or
a common set of mixtures in the case of GMMs. For a GMM,
this arrangement is often referred to as a tied-mixture model.
Hence, the bin-based system with global intercepts is referred
to as a tied-bin model. The features are the GMM or bin weights
and are calculated, respectively, for a particular signal by deter-
mining the weights from the global GMM or the weights for the
global bins for that signal.

A set of ANNs is trained, one for each class, by using the
bin counts or mixture weights as inputs. The training output
is set to one when the signal belongs to that class and to zero
when it does not. Testing is accomplished by computing the
features over a new signal sample, and selecting the class label
corresponding to the ANN with the greatest output.

V. EXPERIMENTS AND RESULTS

We now present the application of the RPS-based signal
classification methods to two different domains. The first appli-
cation is to distinguishing heart arrhythmias. This application
shows how the new approach can accurately classify heart
arrhythmias with only a 2-s signal. The second application
is speech phoneme classification. Here we give initial results
showing that for small datasets the new approach is similar to
traditional spectral methods.

A. Heart Arrhythmia Classification

The goal of this application is to rapidly and accurately clas-
sify four different heart rhythms using signals generated by lead
II of an electrocardiogram (ECG) [10]. These rhythms are sinus
rhythm (SR) and the three arrhythmias: monomorphic ventric-
ular tachycardia (MVT), polymorphic ventricular tachycardia
(PVT), and ventricular fibrillation (VF). This is a clinically rel-
evant problem because different therapies are applied depending
on the type of rhythm. No therapeutic action is taken for SR. For
VF and PVT, electronic shock is the most prevalent therapy. In
the case of VF, collapse occurs within seconds and death within
minutes unless the VF is corrected with the passage of a large
electrical current through the heart muscle. However, shocking
SR can sometimes induce VF.

The data for these experiments were obtained from six pa-
tients during intercardiac defibrillator implantation. Data was
collected from lead II of a 12 lead ECG. The signals were an-
tialias filtered with a cutoff frequency of 200 Hz and subse-
quently digitized at 1200 Hz. The dataset includes 306 s of SR,
126 s of MVT, 116 s of PVT, and 114 s of VF. Because the data
was collected during surgery and the chest was open, the lead
placement was not ideal. This shows that the proposed methods

Fig. 4. Reconstructed 2-D phase space for examples of SR, MVT, PVT, and
VF with � = 11.

are somewhat robust to variances in the exact state variable that
is measured. Data were examined by two experts, whose clas-
sification initially agreed on only 80% of four-second epochs.
After consultation, they concurred on the remaining 20%. Fig. 4
provides an example of the RPSs for the four rhythm types.

The signals are segmented into 2 s intervals and zero meaned
and unit normalized. The initial estimates of time lag and di-
mension are 11 and 9, respectively, using the method proposed
in [12]. Figs. 5 and 6, respectively, show classification accuracy
versus dimension with lag held constant and accuracy versus
time lag with dimension held constant using a 16 mixture
full covariance GMM and a Bayes classifier (GMM:Bayes).
A 10-fold cross validation is performed for all experiments.
Data segments for each fold are randomly selected with the
constraint that the proportion of classes be the same within
each. The experiments are thus not patient independent, in that
a patient’s data may appear in more than one fold. Classifica-
tion accuracy is the total number of correctly classified signals
divided by the total number of signals.

As can be seen in Figs. 5 and 6, the initial estimates of time
lag and dimension are reasonable, but not optimal. Addition-
ally, it can be seen that the GMM:Bayes method is relatively
robust for this problem across a range of time lags from 11
to 15 and dimensions from 13 to 19. Using the best empirical
time lag and dimension, the number of mixtures is varied from
1 to 64. The accuracy increases from 75.8% to 92.2% as the
number of mixtures increases from 1 to 8. From 16 to 64 mix-
tures, the accuracy is relatively stable in the range from 94.5%
to 95.5%. Table I shows the best results for the two methods,
bin-based statistical model and Bayesian classifier (bin:Bayes)
and GMM:Bayes, with the structure of each RPS and number of
mixtures/bins. The sensitivity results for the GMM:Bayes clas-
sifier are 100.0% for SR, 95.2% for MVT, 82.7% for PVT, and
96.5% for VF.

Also seen in Table I are the results of two baseline techniques
commonly used in automatic cardioverter defibrillators— a
heart rate-based method and a gradient pdf-based method—and
frequency-based approach. Details of the first two methods can
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Fig. 5. ECG classification accuracy versus dimension with � = 11 for a 16
mixture GMM and Bayes classifier.

Fig. 6. ECG classification accuracy versus time lag with d = 9 for a 16
mixture GMM and Bayes classifier.

TABLE I
ECG ACCURACY RESULTS FOR EACH METHOD

be found in [32] and [33]. In short, the heart rate method esti-
mates the heart rate for each of the four rhythms and classifies
according to heart rate bands. The gradient pdf approach builds
models of the gradient of the ECG signal and classifies using
a Bayesian approach. The frequency method uses the centroid
frequency of the power spectrum as a feature [34]. The best
results were obtained when using a single mixture to model
this feature across each class. A maximum likelihood classifier
is used on the test signals. The GMM:Bayes method outper-
forms all other tested approaches including the bin:Bayes. The
difficulty in adjusting the granularity of the bin:Bayes method
in comparison to the GMM:Bayes method is also seen. The
GMM:Bayes is able to successfully model a 21–dimensional
space. To apply the bin-based method to such a space with only
one division per dimension would require over one million
bins. We also see that the initial estimates for time lag and
dimension are reasonable, but not optimal, estimates.

Fig. 7. 2-D RPS for examples of normalized phonemes: /ao/, /ow/, /s/, /z/ with
� = 2.

B. Speech Recognition

In this set of experiments, we apply our RPS-based classi-
fication methods to automatic speech recognition, specifically
speaker dependent isolated phoneme classification [35]. The
classification of isolated phonemes is directly related to the
problem of continuous speech recognition, a necessary element
of such important tasks as automated transcription and machine
translation. We compare a traditional cepstral-based method
to the RPS approaches. Examples of four speech phoneme
2-D RPS are shown in Fig. 7. The speech signals, which are
sampled at 16 KHz, are taken from the TIMIT corpus [36]. The
speech signals in the TIMIT corpus contain expertly labeled
time-stamped phoneme boundaries, which can be used to
extract the isolated phoneme data.

The illustrated phonemes are of two different types, vowels,
/ao/ and /ow/, and fricatives, /s/ and /z/. The vowels have
smooth locally correlated trajectories, whereas the fricatives
contain random locally uncorrelated trajectories, as would be
expected from the associated differences in speech production
mechanisms.

We use a single speaker’s data and implement several dif-
ferent RPS models. For this speaker, there are 417 total phoneme
utterances belonging to 47 classes. One class of the standard
48 is not present in this data set. For each method, a model is
learned for each of the 47 classes, yielding 47 models. These
47 classes are folded into 39 classes as is consistent with the
literature [37]. A leave-one-out cross-validation testing is used
for the MFCC approach and bin-based statistical model com-
bined with an ANN classifier (bin:ANN), while a class balanced
10-fold cross validation is used for all other experiments.

The initial estimates of time lag and dimension are 2 and 12,
respectively. In Fig. 8, we can see that these initial estimates are
reasonable, but not optimal. We can also see that the method’s
accuracy is stable across the range of dimensions from 10 to 18
for the GMM:Bayes method. The best results for each approach
are given in Table II.
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Fig. 8. GMM:Bayes phoneme classification accuracy versus dimension with
� = 2 for a 16 mixtures.

TABLE II
SPEAKER DEPENDENT CLASSIFICATION RESULTS

The baseline Mel-frequency cepstral coefficients (MFCC)
approach uses eight mixtures to model the distribution of
12 MFCCs for each phoneme. This is compared to three
RPS-based methods. The bin:Bayes method has the lowest
accuracy of 24.0%. The bin:ANN with a tied-bin statistical
model with 400 (20 20) bins in combination with an ANN
classifier outperforms the bin:Bayes approach. The ANN uses
bin counts as inputs to an ANN with a 400-10-3-1 (400 input
neurons, 10 sigmoid neurons in the first hidden layer, three
sigmoid neurons in the second hidden layer, and one linear
output neuron) architecture. Two versions of the GMM:Bayes
approach are shown. The first is directly comparable to the
MFCC result. The second uses a larger dimension and number
of mixtures to achieve an accuracy of 62.6%. The sensitivity
results for this GMM:Bayes classifier are: vowels 61.8%, frica-
tives 71.9%, nasals 57.1%, semivowels 40.0%, stops 46.3%,
and silence 82.5%.

The results indicate that RPS methods are capable of dis-
criminating between phonemes. From the results of the last
experiment, we can see that for this speaker dependent task,
a GMM:Bayes approach outperforms the MFCC approach. In
contrast to the ECG classification, where the best RPS approach
outperforms the best traditional approach by 24.5%, only the
GMM:Bayes approach outperforms the MFCC approach and
by only 11%. These results give an indication of how well RPS
approaches will perform on tasks that are well characterized by
linear models such as speech production.

VI. CONCLUSION

We have presented the use of RPS representations as a novel
and theoretically well founded method for signal classification,
and shown that statistical models of the RPSs are viable for cap-
turing the information in such a space. The approach is applied
to two signal classification tasks.

A key advantage of such phase space signal models is that this
representation is capable of capturing the full dynamic structure
of any finite-dimensional generating system. In the limit as the
amount of data and corresponding model dimension increases,
the attractor structure can fully describe complex behaviors of
a system of arbitrarily large order. Another advantage of this
approach is its ability to distinguish signals of very short dura-
tion, where the frequency resolution needed for accurate clas-
sification is unattainable. This is useful in applications such as
heart arrhythmia classification, where such rapid classification
enables previously inconceivable therapy options.

It is important to note the types of signal classification
problems for which RPS-based methods will not work better
than power spectral-based methods. Assuming the chosen
modeling approach is of high enough order; power spec-
tral-based methods will outperform RPS-based methods when
the phase of the signal is not important for differentiating
between classes, as would be the case for a linear system. This
can be seen in the phoneme recognition task discussed above,
as there is an ongoing debate as to how important phase is
in speech recognition [38]. Additionally, RPS-based methods
would underperform methods based on a single state variable
when the state structure captured by the RPS fails to provide
additional signal class differentiating information.
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