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Abstract—This paper introduces a novel time-domain approach
to modeling and classifying speech phoneme waveforms. The ap-
proach is based on statistical models of reconstructed phase spaces,
which offer significant theoretical benefits as representations that
are known to be topologically equivalent to the state dynamics of
the underlying production system. The lag and dimension param-
eters of the reconstruction process for speech are examined in de-
tail, comparing common estimation heuristics for these parame-
ters with corresponding maximum likelihood recognition accuracy
over the TIMIT data set. Overall accuracies are compared with a
Mel-frequency cepstral baseline system across five different pho-
netic classes within TIMIT, and a composite classifier using both
cepstral and phase space features is developed. Results indicate
that although the accuracy of the phase space approach by itself is
still currently below that of baseline cepstral methods, a combined
approach is capable of increasing speaker independent phoneme
accuracy.

Index Terms—Nonlinear systems, phoneme classification, recon-
structed phase space, speech recognition.

I. INTRODUCTION

URRENT state-of-the-art speech recognition systems use

frequency-domain features, such as Mel-frequency cep-
stral coefficients (MFCCs), which are based upon a switched
linear model of the human speech production mechanism. This
familiar model is a reasonable, albeit somewhat rough, approx-
imation of the true physiological process, and has led to suc-
cessful coding, synthesis, and recognition algorithms for many
years.

One limitation of this frequency-domain approach is the in-
ability of such a representation to capture the nonlinear and
higher-order characteristics of the speech production process.
Research in this area has suggested that there is evidence of non-
linear behavior in both voiced and unvoiced excitation patterns,
and that such nonlinearity is not insignificant [ 1]-[3]. To capture
this nonlinear information, a number of other analytical methods
have been investigated as an alternative to traditional linear ap-
proaches, including the use of time-frequency and time-scale
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transforms, higher-order statistics, and dynamical systems and
chaos theory.

The basis for the dynamical systems approach, which is the
focus of the work presented here, lies in theorems showing
that by embedding a signal into a sufficiently high dimensional
space, a structure is formed that is topologically equivalent to
the original phase space, i.e., state space, of the system gener-
ating the signal. This embedding, called a reconstructed phase
space (RPS), is typically constructed by mapping time-lagged
copies of the original signal onto axes of the new high dimen-
sional space. The time evolution of the signal within the RPS
traces out a trajectory pattern referred to as its attractor, a term
adopted (somewhat loosely) from dynamical systems theory,
which is a representation of the dynamics of the underlying
system. Each point in the space, as a vector of time-lagged
signal points, captures short-time dynamics, and the overall
attractor structure is a full representation of those dynamics.
Since the attractor of an RPS captures all information about the
underlying system, it is an appealing choice for signal analysis,
processing, and classification. There has been some other
work in time-domain representations of speech signals, such
as through autoregressive modeling [4], but the RPS approach
introduced here has the advantage of capturing both linear and
nonlinear aspects of the underlying system.

The use of RPSs is well known within the dynamical systems
field, and measures taken from that field have been utilized in a
number of application areas, including the tasks of speech syn-
thesis and recognition. Examples include the use of dynamical
invariants such as Lyapunov exponents and fractal dimensions
[5]-[10] as features for recognition, as well as work in func-
tional modeling of attractors using orthogonal polynomial bases
[11], [12]. Our prior work in the area of attractor modeling has
focused on using statistical representations for Bayesian signal
classification, with applications to heart arrhythmia identifica-
tion [13], [14] and motor diagnostics [15], as well as the speech
representation and recognition tasks [16]-[23] presented here.
Advantages of such an approach over those based on invariant
metric features include that it captures more aspects of the at-
tractor and that it generalizes well to arbitrary systems, regard-
less of the degree of nonlinearity present.

The goal of the work presented here is to directly model
reconstructed phase spaces for application to speech recogni-
tion. The current effort focuses on isolated phoneme recogni-
tion, with the goal of identifying its capability for capturing pho-
netic differences in a speaker independent environment.

Section II gives a detailed overview of the dynamical sys-
tems theory and terminology and examines attractor patterns
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for different phoneme classes. Section III introduces the statis-
tical model used to capture these patterns, as well as the fre-
quency domain baseline model. Issues of lag and dimension are
discussed in Section IV, followed by supporting experimental
results and discussion in Section V. Accuracy as a function of
phoneme class is examined in Sections VI and VII discusses
results of the composite RPS/MFCC classifier. We conclude in
Section VIII with a discussion of the initial success of this new
approach and of its potential for more complex speech recogni-
tion tasks.

II. BASIS IN DYNAMICAL SYSTEMS THEORY

As introduced above, the underlying principle of this work
lies in the idea that the state space of a system can be recon-
structed through an embedding of a single state variable or ob-
servation sequence from that system. We denote a time series as
Ty, with a time delay RPS of dimension d and time lag 7 de-
fined by the trajectory matrix

X14+(d-1)T
X24(d—1)T
X - .
L XN
T14(d-1)7 Ti4r T
Lop(d-1)r " L2471 T2 0
L TN IN—(d—2)r TN—(d-1)r

where each row vector in the matrix represents a single point in
the space

Xp = [xn Tn—1

n={14(d-1)7)

xn—(d—l)'r]:
N} (2)

Each point in the space captures local short-time signal dy-
namics, and together the entire RPS is a representation of the
dynamics of the underlying system. The concept of time delay
embedding was first introduced by Packard [24], based on early
theorems by Whitney [25] relating to topological embeddings
in Cartesian spaces. Working from this idea, Takens [26] proved
that delay coordinate maps of dimension greater than twice that
of the original system are embeddings, providing an important
theoretical justification for the practical use of time delay re-
constructions. Sauer, Yorke, and Casdagli [27] have extended
Takens’ work, establishing that, except for a set of degenerate
cases with measure zero, the topological equivalence property
is guaranteed for time-lag reconstructed phase spaces. In ad-
dition, they tightened the bound on the required dimension to
d > 2dy, where d is the boxcounting dimension of the attractor
of the underlying system. Together, the above theorems guar-
antee that for almost every time delay embedding, the recon-
structed dynamics of the map, including dynamical invariants
such as fractal dimensions and Lyapunov exponents, are topo-
logically identical to the true dynamics of the system.

The concept of dimension d and lag 7 play a significant role
in both the theoretical and practical aspects of working with
reconstructed phase spaces. The topological equivalence prop-
erty of the space is only guaranteed for d > 2dg; however, this

is a sufficient condition not a necessary one, so that often di-
mensions of much less than 2d are enough to fully represent
the structure of the attractor. To identify the minimum possible
dimension, heuristic procedures such as false nearest neighbor
thresholds [28] are typically used. The time lag 7 has little im-
pact from a theoretical viewpoint, and in fact there are no limi-
tations or assumptions placed upon it with respect to the under-
lying time-lag reconstruction theorems for discrete-time signals
[27]. However, since topological invariance of systems does not
equate to identical phase spaces or attractors, from a practical
viewpoint the lag must be selected with respect to some rele-
vant criteria. Both dimension and lag, including methods for se-
lecting them as well as their impact on classification accuracy
in the speech task, will be discussed in more detail in Section 4.

Many types of signals and systems can be characterized
through phase space analysis, including linear, nonlinear,
chaotic, and stochastic systems. Linear systems have a fixed
point or periodic attractor structure, while nonlinear systems
may be aperiodic with complex attractor structure. Attractors
of chaotic systems (a subset of general nonlinear systems) have
several unusual characteristics such as snap back repellers,
sensitivity to initial conditions, positive Lyapunov exponents,
and topological transitivity. Additive noise processes add a
random component to each point in the underlying phase space,
obscuring the attractor and increasing the required dimension
for adequate representation.

Examples of reconstructed phase spaces with dimension 3
and lag 6, taken from the TIMIT data set [29], [30] for five
different phonetic classes are shown in Fig. 1. The classes in-
clude vowels, semi-vowels, stops, nasals, and fricatives. The
plots demonstrate that vowels, as quasiperiodic waveforms, ex-
hibit the most distinct structure, with semi-vowels, and nasals
having similar but less defined characteristics. Fricatives, gen-
erated by turbulent air flow, exhibit much less structure (and
would be expected to require higher dimensions for adequate
modeling), while stops and affricates have a defined nonperiodic
structure.

III. PHONEME ATTRACTOR MODEL

Isolated phoneme waveforms are embedded into RPSs using
a pre-specified dimension d and lag 7. To address amplitude
variation across phoneme instances, the reconstructed phase
spaces are amplitude normalized. This is done through a radial
normalization given by

x, = 20 Hx 3)
Oy
where
1 N
£ | o @
Or N—(d—l)’r Z ||X]\ I"’x“? ( )
n=1+(d—1)r

A d-dimensional Gaussian mixture model (GMM) prob-
ability distribution is estimated over the RPS X for each
phoneme class

M M
ﬁ(xn) = Z wmﬁm (xn) = Z me(Xn7 B s Em) (5)
m=1 m=1
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Fig. 1. Examples of reconstructed phase spaces. (a) VOWEL /ow/,
(b) FRICATIVE /f/, (c) STOP /t/, (d) SEMIVOWEL /1/, and (¢) NASAL
/ng/.

where M is the number of mixtures, w,, is a mixture weight
and N (x,; pt,,,, Xm) is a Gaussian distribution over x,, with
mean p,, and covariance matrix 3,,. These parameters are
learned using the Baum Welch algorithm, beginning with a
single mixture and increasing using a binary split permutation
across all mixtures after each parameter estimation, until the
desired number of mixtures is reached. Maximum likelihood
(ML) classification is accomplished via

N
r— b (X — 1 D.:
= arg max {00} afg;nﬁ%c{ZlogMXn)}

(6)

where C is the number of phonemes. In summary, the training
process consists of learning a GMM across all the trajectory ma-
trices data for a given phoneme, and testing consists of com-
puting a point-by-point likelihood from those GMMs for each

phoneme. The features being modeled are the time-lagged ob-
servation vectors from the original time domain signal. The sta-
tistical distribution of these observation vectors captures the
attractor geometry and short-term signal dynamics, including
spectral characteristics as well as nonlinear system character-
istics. Long-term dynamics due to nonstationarity must be cap-
tured in other ways, such as through state sequences in a Hidden
Markov model or through global trajectory models [31]-[33]
just as with spectral features.

The baseline method selected for comparison uses a
39-element feature vector, comprised of 12 mel-frequency
cepstral coefficients (MFCCs) plus energy, augmented with
delta and delta-delta (first- and second-order linear regression)
coefficients. Frequency domain processing is done with the
HTK toolkit [34], using a pre-emphasis filter with frequency re-
sponse of H(z) = 1/(1—0.97z~1), a25 ms hamming window
and 10 ms step size, and a 24-band triangular mel-frequency
filter bank with discrete cosine transformation to 12 MFCCs.

GMM implementation for both the RPS and cepstral ap-
proaches is done through a 1-state Hidden Markov Model
in HTK, with a 16-mixture state distribution for the cepstral
coefficients and a 128-mixture state distribution for the RPS
features.

Note that since the MFCC features are frame based and the
RPS features are sample point based, there are substantially
more observations available for training in the RPS case, by a
multiplicative factor equal to L, the frame step size. With 16 kHz
signals, the 10 ms step size used here corresponds to a factor of
L = 160. The change in observation rate also affects computa-
tion time by approximately the same linear factor.

The data set used for these experiments is TIMIT [29], [30], a
speaker independent corpus that contains expertly-labeled pho-
netic boundary information. The original 64 phoneme TIMIT
set is reduced to a 48 phoneme set for building models, and re-
sults are folded to create a 39-phoneme confusion matrix, using
the approach given in [35]. For within-class recognition exper-
iments, the five phonetic classes are given by

Vowels {ih ix} {ax ah} {ao aa}
iy eh ey ae aw ay ox ow uh uw er
Semivowels {el 1} r w y hh
Stopsb d g p t k dx
Nasals {n en}m ng
Fricatives {sh zh} jh ch s z £ th v dh.

Brackets indicate those models that are trained separately and
then folded for generating accuracy results. The silence models
{cl vcl epi sil} were notused for the within-class recogni-
tion experiments, but are included in overall accuracy numbers.

IV. ANALYSIS OF LAG AND DIMENSION IN
PHONEME ATTRACTORS

As mentioned previously, the dimension d and lag 7, the fun-
damental parameters of a time delay RPS, are both important
and difficult to determine exactly. The dimension is perhaps of
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greater significance, since a sufficient dimension is a theoretical
requirement for valid modeling, but lag has also been shown to
have significant impact, altering the structure of the resulting
RPS attractor as well as in some cases affecting the required di-
mension [36], [37]. Methods for estimating dimension and lag
are typically heuristic and sensitive to algorithm parameters, and
in addition the criteria on which they are based may not be en-
tirely generalizable to the larger goal of maximizing classifica-
tion accuracy. In this section, we review the most common ap-
proaches for identifying dimension and lag, apply them across
the TIMIT corpus and generate histograms of the results as a
function of phonetic class. The results of these experiments are
then compared with recognition accuracy results as a function
of dimension and lag, with the goals of examining the impact of
these parameters on accuracy and identifying whether heuristi-
cally determined values for them are adequate.

At low dimensions, there are many points along an RPS tra-
jectory that are near each other due to projection rather than
dynamics. As the dimension is increased these points, called
false neighbors, “unfold” from each other into distinct neighbor-
hoods. Once the dimension is high enough so that the attractor
structure is fully unfolded, there is no benefit to any further in-
crease, as the dimension of the attractor will be unchanged even
if the dimension of the embedding space is increased. Heuristic
procedures such as the false nearest neighbor method [28] take
advantage of this concept to estimate the lowest dimension in
which there are no false nearest neighbors. The implementa-
tion used here is taken from Abarbanel et al. [38], [39]. We
denote x,,(d) as a point in an RPS of dimension d and lag T,
and define xY " (d) as its nearest neighbor, the nearest point to
X, (d) with respect to Euclidean distance. The squared distance
between these two points is

Il
i
3
L
3
By
S—"
8
Sz
Iz
42
—
Q,
=,
(3]

(N

The difference in squared distance between dimension d and
d + 1, which indicates how far the two neighboring points have
moved from each other, is then

Dy(d+1)* = Du(d)? = Y [nin(d) — 232, ()]

-
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o

Normalizing the square root of this difference with respect to
the original distance at the lower dimension results in a ratio of
how far apart two originally close points have moved, which can
be compared to a threshold to identify a “false neighbor”

[0 (d) = 2, (d)

Dy(d)

> Threshold £ 7 )

and the percentage of false nearest neighbors is

(v=a=1)

N NN

Tp—dr(d) — ;2 (d

x Sgn{| d(z))(d) d()|—rT} (10)
n:l—l—(d—l)T n

where sgn(-) is the sign function. The percentage of false
nearest neighbors can then be compared to a second threshold
on the order of 0.001-0.01 to select an appropriate dimension.
Each of these two thresholds can have significant effect on the
results of the algorithm.

There are several common techniques used for identifying
the preferred time lag for an RPS, including using the first min-
imum of the auto-mutual information function or the first zero-
crossing of the auto-correlation function [28]. Each of these
functions can be poorly behaved, especially on noisy signals,
occasionally giving artificially low or absurdly high values. The
automutual information approach is used here, as it is slightly
more common in practice. To implement this, a two-dimen-
sional (2-D) histogram of {x,,x,_.} is used to calculate the
auto-mutual information function

I(r) = Zpij(T) lnpp’iﬂ (11)

i(7)p; (7)

where ¢ and j are the histogram bin indices. The first local min-
imum of the function I(7) is taken as the desired lag. This
process essentially finds the lag giving the least overlap of in-
formation between axes in a 2-D phase space.

Since the automutual information function is independent of
RPS dimension, whereas the false nearest neighbor method re-
quires a lag selection for embedding, the automutual informa-
tion method is implemented first, and the results are used to set
the reconstruction lag for the false nearest neighbor technique.

Histograms of the lag determined by the first minimum of
the automutual information function across phonemes within
TIMIT are shown in Fig. 2. The overall height of the bar chart
represents the distribution of lags across the entire TIMIT set,
while the individual stacked elements within each bar indicate
the breakdown across phoneme classes. There are several imme-
diately apparent observations regarding these results, including
that the distribution is quite spread out, ranging from one up to
20 or more. In addition, the breakdown of the distribution is in-
consistent across the classes, indicating for example that using
this criteria the selected lag for fricatives would be one whereas
that for nasals would be nine.

Overall, the distribution outlined by these histograms sug-
gests that the best lag is probably five or six based on this cri-
terion, with six representing the peak value by a small margin.
Using a lag of six as the baseline, the dimension is varied and
histograms of the minimum dimension as determined by the
false nearest neighbor algorithm outlined above, with 7 = 15,
are plotted across phonemes within TIMIT. The resulting false
nearest neighbor histograms are shown in Fig. 3. Again, the
overall height of the chart represents the distribution of chosen
dimensions across the entire TIMIT set, while the individual
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Fig. 2. Histograms of first minimum of automutual information.
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Fig. 3. Histograms of false nearest neighbor threshold crossings.

stacked elements within each bar indicate the breakdown across
phoneme classes.

The results shown here initially seem more consistent than
those used for determining lag, indicating an optimal dimension
of five across all phonetic classes. This is somewhat surprising,
since expectations would be that the chosen dimension for peri-
odic signals such as vowels should be much lower than that for
sounds such as fricatives. In addition, since the thresholds used
in the method place a significant bias on the results, it is of in-
terest to measure the impact of this factor as well. To visualize
this latter effect, in Fig. 4 we compare the overall false nearest
neighbor histogram from Fig. 3 with a second histogram com-
puted using a different threshold, rr = 2.5, on the false nearest
neighbor distance ratio of (9). The resulting effect is to shift the
histogram significantly to the right, indicating a much higher di-
mension than in the first case.

Threshold r=15 Threshold r=2.5

0.40 0.40
0.35 0.35
0.30 0.30
0.25 0.25
0.20 0.20
0.15 0.15
0.10 0.10
0.05 0.05 III"II
% 5 0 a5 20 % 5 10 15 20

Dimension Dimension

Fig. 4. Histograms of false nearest neighbor thresholds 15 and 2.5.
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Fig. 5. TIMIT accuracy versus dimension, at lag 6.

There is thus no clear interpretation regarding the best dimen-
sion to use. As a threshold of 15 is considered to be a standard
value and as this value generally gives stable results in the range
10 < rp < 50 [39], we will use the results of the first plot of
Fig. 4, which suggests that the benefits of continuing to increase
dimension seem to drop off after a dimension of about 5. This
indicates that a baseline choice using the standard tools might
be a dimension of 5 and lag of 6.

V. TIMIT ACCURACY RESULTS ACROSS LAG AND DIMENSION

To examine how well the automutual information and false
nearest neighbor heuristics correlate with respect to the under-
lying classification task, the GMM RPS classifier described in
Section 6 is tested across a wide range of lags and dimensions.

In the first set of classification experiments the lag is held
constant at 6 and the dimension is varied. Resulting accuracies
across the TIMIT corpus are shown in Fig. 5.

The accuracy shown in Fig. 5 starts to asymptote around a di-
mension of 6, but continues increasing slowly until a dimension
of about 11, at which time it plateaus and appears to begin a
very gradual drop. The asymptote of 6 is consistent with the di-
mension chosen according to the false nearest neighbor method
with a threshold of 15.
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Fig. 6. TIMIT accuracy versus lag, at dimension 11.

Using this peak dimension, the dimension is held constant and
the classification task is implemented with lag varying across a
range of 1 to 10. Results are shown in Fig. 6.

While the dimension at which accuracy begins to asymptote
follows roughly with the heuristic expectations, this is less the
case with respect to time lag identification. It can be seen that
the accuracy is highest for a lag of 1, with a decline followed by
a second lower peak value at about lag 5, near the lag 6 value
chosen according to the automutual information criteria. It is
interesting to note though, that the shape of the accuracy curve
of Fig. 6 and the automutual information histogram of Fig. 2 are
both of a bimodal character, with peaks at lags of 1 and 6 in the
automutual histograms and peaks of 1 and 5 for classification
accuracy.

Overall results shown as a function of both lag and dimension,
across lags 1, 3, 6 and 9 and dimensions 9, 11, 13, and 15, are
given in Fig. 7. The overall accuracy of the system, using a lag of
1 and a dimension of 11, is 35.06%. In comparison, the baseline
classification system, using a 39-element observation vector and
a 16-mixture GMM, is 54.86%, indicating that the RPS method
is still significantly behind the standard spectral approach.

Based on these studies, we see that the accuracy curves are
smooth and relatively monotonic with respect to both lag and di-
mension, indicating that small adjustments in these parameters
should be expected to lead to small changes in results, a conclu-
sion which, although expected for linear system models, is not
at all guaranteed for nonlinear models such as these. This is an
important characteristic for the RPS method, as it has already
been seen that determination of lag and dimension is generally
not exact and it is essential from a practical perspective that the
approach be robust with respect to these parameters.

VI. VARIABILITY ANALYSIS AND ACCURACY
BY PHONEME CLASS

Dynamical systems theory shows that given sufficient dimen-
sion the RPS of a signal is a complete representation of the un-
derlying system, including both spectral and higher-order char-

0.40
'y
0.35 °« .
o '
0.30
0.25 / .
e Lag1 §
Lag 3 |
Lag 6 |
|- Lag9 |
9 1 13 15

Dimension

Fig. 7. TIMIT accuracy versus both lag and dimension.

acteristics. This does not, however, guarantee that the differ-
ences in attractor structure between phonemes, as captured by
our statistical RPS models, are proportional to perceptual dif-
ferences or will lead to optimal classification accuracy. Intra-
class and interclass variability among attractors is a function of
a number of factors, including not only lag and dimension as
already discussed, but also parameters such as fundamental fre-
quency (which affects RPS structure more than it affects cepstral
features) and speaker differences, which have not been previ-
ously analyzed for this type of time-domain representation.

The affect of fundamental frequency on attractor structure
[19] has been examined by using a variable-lag rather than
fixed-lag RPS representation, where the lag was adjusted in
proportion to the ratio of each phoneme exemplar’s fj to the
mean fo over the entire training set. This process essentially
normalizes the periodicity of each attractor. Applied to clas-
sification of TIMIT vowels, the result was a small increase in
accuracy, suggesting that while there is some variability due to
fo, the effect is not large.

The variability of attractor structure across speakers has been
examined previously [19], by comparing classification accuracy
as a function of the number of speakers in a speaker-dependent
task. The results showed that while accuracy is higher for the
single-speaker case, it asymptotes relatively quickly and does
not continue to degrade as larger numbers of speakers continue
to be included. This result, combined with the overall accuracy
results discussed in the previous section, demonstrates that the
basic attractor structure for each phoneme class is consistent.

To investigate the relationships between perceptual and pho-
netic-acoustic differences and attractor structure, the class con-
fusion matrices from the above classification experiments can
be studied. The confusion matrices (available in [40]) indicate
that the vast majority of errors are between phonetically sim-
ilar classes, with number of errors correlated with degree of
phonetic similarity. The accuracy within each phoneme class is
given in Fig. 8 as a function of dimension and in Fig. 9 as a
function of lag. It can be seen that each class has a relatively flat
accuracy curve, as was the case for the overall data set as well.
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Fig. 8. TIMIT accuracy versus dimension at lag 1, by phoneme class.
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Fig. 9. TIMIT accuracy versus lag at dimension 11, by phoneme class.

The one exception is that accuracy of the fricative class is signif-
icantly affected by the selected time lag, whereas accuracy for
the other classes changes only minimally. At lag 1, semivowels
and glides have the highest within-class accuracy, followed by
fricatives, stops, nasals, and vowels, respectively.

The results of comparisons to the MFCC based models are
shown in Table I. Phoneme accuracies in percent are given for
both the RPS and the MFCC models. The traditional frequency
domain approach outperforms the time-domain RPS model
across all of the phoneme classes, although to varying degrees.
Relative to the baseline values, the RPS method performs the
best on the affricates and fricatives class, and performs the
worst on nasals and vowels.

TABLE 1
COMPARATIVE ACCURACY, BY PHONEME CLASS
RPS 71,d11 39-MFCC+A,AA
Semivowels and glides 69.38 83.81
Affricates and fricatives 58.72 71.78
Stops 50.32 57.07
Nasals 48.94 66.67
Vowels 34.95 59.92
Overall accuracy 35.06 54.86
65
60 peak at 0.25
E\i 53 Baseline 0
>
8 50
=3
3
< 45
40 3
35
0.2 0.4 0.6 0.8 1
P
Fig. 10. TIMIT accuracy versus stream weight factor r.

VII. CoMmPOSITE RPS/MFCC CLASSIFIER

An analysis of the error patterns between the RPS classifier
and the MFCC classifier indicated that many of the errors were
disjoint, suggesting the possibility that the two methods could
be combined to increase overall accuracy. A composite system
[40] was built using the stream weight mechanism in HTK, with
the time-rate mismatch between RPS points and cepstral coeffi-
cients handled by replicating the cepstral coefficients from each
analysis frame for each sample. The overall likelihood score for
a phoneme is then given by

N

Z((l — p) log pres,i(%n)

n=1

¢ = arg max
i=1..C

+ plog pumrcc,i( MFCC,,)) (12)
where 1 — p and p are the stream weights and prps and pyircc
are the GMM distributions for the RPS and the MFCC features,
respectively. The RPS parameters for the composite system are
a time-lag and dimension of 7 = 6, d = 10, where the first five
dimensions are time-delay reconstructions and the next five are
delta coefficients [40].

Resulting accuracy as a function of the stream weight factor
p is given in Fig. 10. Peak accuracy is 57.85%, an improvement
of about 3% absolute error compared to the baseline system’s
54.86% accuracy. Confidence interval analysis of these results
indicates statistical significance level of above 0.999. The exact
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value of the maximizing stream weight factor should not be
interpreted as indicative of relative feature strength in combi-
nation, since the differing distribution characteristics and the
time-rate differentials have substantial impact on the optimal pa-
rameter value.

VIII. DIsCUSSION AND CONTINUING WORK

A new approach to speech representation and classification
has been introduced, based on statistical models of phase spaces
reconstructed from the time domain waveform. Investigation of
the impact of RPS dimension and lag values indicates that rep-
resentation capability as measured by recognition accuracy is
relatively robust with respect to variation of those parameters,
given a minimum dimension value of at least 5 or 6. Overall
results indicate that statistical RPS models are able to differen-
tiate isolated phonemes in a speaker independent task, and to
increase classification accuracy when used in combination with
frequency domain features. From a representation perspective,
an RPS is able to capture aspects of the underlying speech pro-
duction system that cannot be fully captured by spectral infor-
mation, and the results presented here support further investiga-
tion of potential features and models stemming from this avenue
of research.
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