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Abstract—A new method for the fault diagnosis of a broken ro-
tor bar and interturn short circuits in induction machines (IMs) is
presented. The method is based on the analysis of the three-phase
stator current envelopes of IMs using reconstructed phase space
transforms. The signatures of each type of fault are created from
the three-phase current envelope of each fault. The resulting fault
signatures for the new so-called “unseen signals” are classified us-
ing Gaussian mixture models and a Bayesian maximum likelihood
classifier. The presented method yields a high degree of accuracy in
fault identification as evidenced by the given experimental results,
which validate this method.

Index Terms—AC motor drive systems, broken bars, envelope
detection and classification, fault diagnosis, induction machines
(IMs), induction motors, interturn short circuits.

I. INTRODUCTION

INDUCTION machines (IMs) are complex electromechani-
cal devices that are utilized in most industrial applications

for the conversion of power from electrical to mechanical form.
The IMs can be energized from constant-frequency sinusoidal
power supplies or from adjustable-speed ac drives. However,
IMs are susceptible to many types of fault, especially when
supplied by the ac drives. This is due to the extra voltage
stresses on the stator windings, the resulting induced bearing
currents, and the high-frequency stator current components
caused by such drives. In addition, motor overvoltages can
occur because of the length of cable connections between a
motor and an ac drive. This last effect is caused by the reflected
wave transient voltages [1]. For industrial processes, the IM
fault monitoring and diagnosis is important to identify motor
failures before they become catastrophic and to prevent severe
damage to induction motors. Undetected minor motor faults
may cascade into motor failure, which in turn may cause pro-
duction shutdowns. Such shutdowns are costly in terms of lost
production time, maintenance costs, and wasted raw materials.
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According to published surveys, IM failures include bearing
failures (which are responsible for 40%–50% of all faults),
interturn short circuits in stator windings (which represent
30%–40% of the reported faults), and broken rotor bars and
end ring faults (which represent 5%–10% of the IM faults) [2].
This paper is centered on electrically detectable faults that occur
in the stator windings and rotor cage, namely interturn stator
shorts and broken rotor bars.

Significant efforts have been dedicated to the IM fault di-
agnosis during the last two decades, and many techniques
have been proposed [3]–[24]. Several of these fault detection
and identification techniques are based on the stator current
fast Fourier transform spectral signature analysis, which uses
the power spectrum of the stator current [7], [8], [22], [25].
Other techniques include vibration analysis, acoustic noise
measurement, torque profile analysis, temperature analysis, and
magnetic field analysis [9]–[11], [23]. Recently, new techniques
based on artificial intelligence (AI) approaches have been intro-
duced using concepts such as fuzzy logic [12]–[14], [20], [21],
[24], genetic algorithms [11], [15], neural network [16], [17],
and Bayesian classifiers [18], [26]. Additionally, a method that
uses the motor internal physical condition based on a so-called
pendulous oscillation of the rotor magnetic field space vector
orientation has been introduced for motor fault classification
[5], [19].

This paper presents a method that is based on the analysis of
the envelope of the three-phase stator current for broken rotor
bars and interturn stator shorts. It was found in this investigation
that the three-phase current envelope is a powerful feature
for motor fault classification. The envelope signal is extracted
from the experimentally acquired stator current signals and is
used in conjunction with AI techniques based on Gaussian
mixture models (GMMs) and reconstructed phase space (RPSs)
to identify motor faults. This method creates signatures for each
type of fault based on the three-phase stator current envelope.
A signature for each newly acquired input set of three-phase
stator currents, which are called “unseen signals,” must be
generated and compared with all the signatures that represent
each type of fault learned from the previously acquired data-
base. The conditional likelihoods between this new signature
and the previously learned signatures for each type of fault are
calculated. Thus, a classifier identifies the previously learned
signatures with a maximum likelihood, which now classifies the
fault of the so-called “unseen signal” undergoing the process
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of classification. In this paper, the classification process yielded
high accuracy using just a half second of the current signal for a
three-phase 460-V 60-Hz six-pole 5-hp squirrel-cage induction
motor, which is roughly the time equivalent of a third of a slip
cycle under normal loads. This will be shown and supported
by the experimental results presented in Section III. Again,
the presented method is focused on two types of motor faults.
Specifically, the first type is the broken rotor bar, and the second
one is the interturn short circuit in stator windings.

In addition, the presented method not only classifies an IM
as healthy or faulty but also identifies the severity of the fault
through the identification of the number of broken rotor bars or
the number (or percentage) of short-circuited turns in the stator
windings. This constitutes a powerful means of monitoring
motor fault severities, which could possibly predict the time of
onset of the complete failure of a motor and thus could help
prevent unexpected shutdowns of industrial processes.

The remainder of this paper is organized as follows:
Section II details the method, as well as analyzes and discusses
the procedure to obtain the current envelope, and discuses
the organization of the data sets. Section III presents the ex-
perimental results and analysis for broken bars and interturn
short circuits in stator windings. This is followed by an overall
discussion of results and conclusions.

II. BACKGROUND

This section presents the induction motor fault diagnosis
method and explains the procedure to obtain the three-phase
stator current envelope signals for broken rotor bars and in-
terturn short-circuit cases. Additionally, a presentation of the
approach taken in organizing the data set is given.

A. Methodology

The fault classification method is based on machine learn-
ing techniques [27]. The general concept consists of training
the classification algorithm using data sampled from the ex-
perimentally acquired three-phase stator currents. These data
include different motor operating conditions, including faulty
and healthy motor operations. Thus, from each motor operating
condition, a signature is generated during the training stage
of this method. Additionally, the resulting trained algorithm is
tested on the so-called “unseen signals,” which constitute the
testing set. The accuracy of the motor fault classifier is defined
in proportionality to the correctness of the classification of each
faulty and healthy case to be identified in the testing set. The
training signatures must properly represent the features of each
motor operating condition to result in maximum fault diagnosis
accuracy.

The process of algorithm training and motor fault classifica-
tion is based on a previous work detailed in [26], in which one
can also find the pseudocode of the approach. In the interest
of continuity, essentially, the process consists of constructing
a GMM [26] from an RPS [26], [28], [29], where the resulting
models are the signatures of the motor operating condition.
This RPS-based approach allows for the reconstruction of an
IM’s state structure [30], [31]. The resulting fault signatures for
the “unseen signals” are classified using a Bayesian maximum

Fig. 1. GMM of the three-phase stator current envelope of a faulty IM RPS
with eight mixtures, dimension of 2, and time lag of 9.

likelihood classifier [27]. This process has three steps. The
first step is data analysis, where the input signals from the
training set are normalized to zero mean and then scaled to unit
standard deviation. Moreover, two parameters are calculated
to construct the RPS, i.e., the time lag and the dimension. The
time lag is calculated using the first minimum of the automutual
information function, and the dimension is defined using the
global false nearest-neighbor technique [26], [28], [29]. The
second step is to learn the GMM of the RPS. The time lag and
the dimension are used to build the RPS for each class of motor
operating conditions. The GMM is learned with M mixtures
for each class of motor operating conditions. The number of
mixtures is related to the complexity of the models. A higher
number of mixtures implies a more complex model. Ideally,
a more complex model provides a higher accuracy in signal
classification. However, practically, there is an optimal number
of mixtures for maximum accuracy, and past that number,
the accuracy tends to be lower. Moreover, the parameters
of the GMM (centers and covariances) are estimated by an
Expectation Maximization algorithm [26], [32]. A GMM of
the RPS with dimension of 2, time lag of 9, and eight mixtures
is shown in Fig. 1. Moreover, two parameters of the GMM
(centers and covariances) are also shown in Fig. 1. The last step
is that of motor fault classification. The signature for an “unseen
signal” is classified using the previously trained GMMs. The
RPS of the “unseen signal” is constructed with the same
dimension and time lag of the previously learned signatures.
The Bayesian maximum likelihood classifier [27] computes the
conditional likelihood of the signatures for this “unseen signal”
under each signature (GMM) previously learned using the
training set. The learned signature with maximum likelihood
defines the particular class of motor operating condition (faulty
or healthy). The algorithm of this overall method is depicted
in the functional flow chart of Fig. 2. In this figure, the results
obtained in the training stage (a) are followed by the fault
classification stage (b) of the algorithm.

The training and testing sets are generated from the en-
velopes of the three-phase stator current of an induction motor
for cases involving healthy and faulty operating conditions,
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Fig. 2. Algorithm of the presented method. (a) Training stage. (b) Testing or
classification stage.

such as broken rotor bars and interturn short circuits in the
stator windings. The training and testing sets are further dis-
cussed in the next sections.

B. Three-Phase Stator Current Envelope

The objective of this section is to explain the effect of broken
rotor bars and interturn short circuits on the three-phase stator
currents of IMs. The broken bars produce a phenomenon called
envelope that is cyclically repeated at a rate equal to twice the
slip frequency (2sf), and the interturn short circuits cause a
profile modification on the three-phase stator current leading
to an envelope cyclically repeated at a rate equal to the power
frequency (f). The procedure to obtain the three-phase stator
current envelope is discussed next.

A healthy rotor has a rotating magnetic field nature that
possesses a perfect periodic profile over a two-pole pitch,
which leads to a circular trace of the magnetic field’s space
vector. However, once a rotor develops a single broken bar,
the aforementioned periodical profile is lost over the two pole
pitches of the rotor containing the broken bar due to the fact
that no induced current can flow in the broken bar [5], [19].
Consequently, the magnetic field’s neutral plane orientation

Fig. 3. One slip cycle of the three-phase stator current envelope for a three-
phase 460-V 60-Hz six-pole 5-hp squirrel-cage induction motor with four
broken bars under rated load.

Fig. 4. Laboratory test setup for the 5-hp induction motor and data
acquisition.

deviates from the position for the healthy case, which results in
an angular shifting in the rotor magnetomotive force waveform.
This angular shifting is a function of the number of broken bars
and the geometric distribution of the broken bars around the
rotor, and varies with time in a cyclical manner, as explained in
[5] and [19]. The distortion of the rotor’s magnetic field orien-
tation and the resulting local saturation in the rotor laminations
around the region of the broken bars lead to a quasi-elliptical
trace of the magnetic field’s space vector and consequently
modulate in a sequential manner the three-phase stator current.
The modulation of the three-phase stator current is the so-called
envelope. In this paper, this envelope is the feature used for
induction motor fault diagnosis. The envelope resulting from
the modulation of the three-phase stator current for a period
equivalent to one slip cycle for a faulty 5-hp IM with four
broken bars is shown in the experimentally obtained results
plotted in Fig. 3. The laboratory test setup used to obtain these
data is shown in Fig. 4.
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Fig. 5. Three-phase stator current envelope for a three-phase 460-V 60-Hz
six-pole 5-hp squirrel-cage induction motor with four interturn short circuits
under rated load.

On the other hand, an interturn short circuit principally
affects only the stator current of the faulty phase in both
profile and peak value. The other stator phase currents suffer
smaller interferences. Thus, the stator current profile of each
phase is not equally affected by the fault. This three-phase
stator current profile modulation is also referred to here as the
so-called envelope. Again, the frequency of repetition of this
envelope is the power frequency f and not a function of the slip
frequency sf , which is associated with broken bar faults. The
resulting envelope of the three-phase stator current for the same
5-hp IM with four interturn short circuits without broken bars
experimentally obtained under rated load is shown in Fig. 5.

The procedures to obtain the three-phase stator current en-
velopes for the broken bar and interturn short-circuit cases for
learning and classification are identical. This procedure can be
summarized in the following steps: 1) low-pass filter (LPF);
2) envelope identification; 3) interpolation; and 4) normaliza-
tion, see the functional block diagram in Fig. 6. The first step
is an LPF, which is essential for the IMs supplied by the ac
drives. The stator current of an IM supplied by an ac drive
has a high-frequency component due to the carrier frequency
responsible for the pulse width modulation (PWM) of the ac
drive. Typically, the stator current frequency is variable from
0 to 60 Hz, and the carrier frequency is a fixed value in the
range from 4 to 16 kHz. This PWM component is eliminated
from the ac current signal by a sixth-order low-pass elliptic
digital filter with a cutoff frequency of 2 kHz, a passband of
3 dB, and a stopband of 50 dB [33]. The cutoff frequency was
chosen to be 2 kHz because the carrier frequency of the ac drive
is at least 4 kHz. Accordingly, the envelope is isolated from
the three-phase stator currents without any significant PWM
component. The second step, which is envelope identification,
consists of extracting from the three-phase currents only the
positive peak of each period in each phase. Thus, in 1 s of
60 Hz, the three-phase current signal has 180 positive peaks.
In the third step, these few points are interpolated to smoothly
represent the dynamic behavior of the three-phase stator current

Fig. 6. Procedure to isolate the envelope of the three-phase stator current from
an IM supplied by an ac drive for further motor fault classification.

envelope. The fourth and last step is the z-score normalization
that centers the signal at zero mean and scales it to unit standard
deviation [34]. After accomplishing these four steps, the iden-
tified envelope is used to generate the training set to learn the
GMMs or the testing set to classify these unseen input signals
with a maximum likelihood Bayes classifier [27]. Again, these
steps to isolate the envelope of the three-phase stator currents
of a given IM supplied by an ac drive can best be visualized
by inspection of Fig. 6. The procedure that utilizes only three
current sensors is easily available and implementable in most
industrial applications. In most drives, this current information
is readily available, and hence, no extra current sensors are
needed to implement this procedure (algorithm).

C. Time Series Data Sets

A case-study three-phase 460-V 60-Hz six-pole 5-hp
squirrel-cage induction motor supplied by an ac drive operating
under scalar (open-loop) constant volts-per-hertz control was
tested in the laboratory. This motor has a cage with 45 bars (i.e.,
7 1/2 bars per pole pitch), and it has 240 stator winding turns
per phase housed in a stator with 36 slots (i.e., six slots per
pole and hence two slots per pole per phase). This motor was
tested under healthy and one to four broken bars of rotor faulty
conditions, as well as one to four interturn shorts in one phase
of the stator windings. Thus, this set of tests yielded nine classes
of IM operating conditions. An external resistor rf of 1 Ω
was used to emulate a developing or “incipient” interturn short
circuit in the stator windings, as depicted in Fig. 7. This resistor
also restricts the circulating currents in the shorted portion of
the stator winding to a safe level to avoid permanent motor
winding damages. In these tests, the loop current in the shorted
turn was not allowed to exceed (in root mean square magnitude)
three times the rated line current of the motor.

The three-phase stator current was sampled for each class
at a 50-kHz sampling frequency using the data acquisition
board shown in the functional schematic of Fig. 6. Each class
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Fig. 7. Schematic of the tapped induction motor windings.

has 5 s of signal, which results in 250 000 data points each.
This 5 s of signal was equally divided into ten samples, where
each sample is a time series. The definition of time series is
explained in [26]. Thus, the procedure depicted in Fig. 6 was
carried out, and the resulting totality of ten time series of each
class yielded the training set as well as the testing set using a
cross-validation technique [27], [35]. Cross validation is a well-
known technique used when the data set is not large enough to
obtain totally independent training and testing sets. The cross
validation splits the same data set to generate different training
and testing sets. The training and test sets were generated by
K-fold cross validation with K = 10 (see [27] and [35]).

The experiment carried out for broken bars has five classes
(one to four broken bars and the healthy case), and for the
interturn short circuits, it also has five classes (one to four
interturn short circuits and the healthy case). However, the
last experiment combines all faults plus the healthy case, thus
resulting in nine classes.

Accordingly, the number of samples of the testing set gen-
erated using K-fold cross validation is defined by the number of
time series per class times the number of classes. These samples
of the testing set are distributed in K-folds. Thus, an experiment
with five classes (K = 10) and ten time series per class has a
testing set with 50 samples distributed in ten folds that are to be
classified.

III. EXPERIMENTAL VERIFICATION OF

THE PRESENTED METHOD

The motor current envelopes obtained from the experimen-
tally acquired motor current data represent two types of motor
faults, i.e., broken rotor bars and interturn short circuits in stator
windings. The experiment for broken bars was carried out for
three different motor loads and for two different ac drive output
frequencies, which yields two different motor speeds. On the
other hand, the experiment for the interturn short circuits in
stator windings was carried out for three values of motor loads
at one ac drive output frequency. Finally, the last experiment
for broken bars and interturn short circuits yielding nine classes
of motor operating conditions was carried out for three levels
of motor loads also at one ac drive output frequency. All the
experimental results presented below validate the efficacy of
this method.

The aforementioned case study of the three-phase 5-hp
squirrel-cage induction motor with one to four broken rotor
bar faults was tested in the laboratory. The fault classification

TABLE I
ACCURACY OF FAULT CLASSIFICATION FOR AN INDUCTION MOTOR WITH

ONE TO FOUR BROKEN BARS AT 60 Hz AND THREE DIFFERENT MOTOR

LOADS BASED ON A TESTING SET WITH 50 SAMPLES

results for broken bars with the motor running at 60 Hz and
three different levels of loads are shown in Table I. The results
for each combination of mixtures of the fault signatures and lev-
els of load torque shown in Table I were generated using a test-
ing set with 50 samples obtained by 10-fold cross-validation.
Here, each sample has a duration of 0.5 s of the three-phase
stator current envelopes. Accordingly, the one to four broken
rotor bars and the healthy motor case yield five classes of motor
operating conditions. Again, the motor was tested with three
different magnitudes of load that correspond to 50%, 75%, and
100% of the rated torque. It should be pointed out that the
rated torque is 30 N·m. As given in Table I, the accuracy of the
resulting fault classification for a motor load of 50% and 100%
of the rated torque was 100%, i.e., all 50 unseen input samples
of the testing set were correctly classified independent of the
number of mixtures of the fault signatures. The same level of
accuracy was obtained for a motor load of 75% of the rated
torque with 4, 16, and 32 fault signature mixtures. However, a
slightly lower fault classification accuracy of 98% was obtained
and is shown in Table I for the 75% of the rated torque case
with eight fault signature mixtures, which means that only
one of the 50 samples of the testing set was misclassified.
Additionally, the presented fault classification method not only
monitors the faults (thus distinguishing a faulty motor from a
healthy motor) but also diagnoses the degree of fault severity
(thus identifying the number of broken bars). Here, the degree
of fault severity is proportional to the number of broken bars.
Furthermore, the presented results were carried out for motor
loads over 50% of the rated torque. However, the accuracy of
the fault classification for motor loads below 50% of the rated
torque is slightly lower compared to the accuracies obtained
for motor loads above 50% of the rated torque. Below 50% of
the rated torque, the amplitude and profile of the envelopes for
any number of broken bars become very similar to the healthy
case in which the amplitude of the envelope is ideally zero.
Thus, when signals with similar envelopes are obtained for a
given operating condition under healthy and faulty operations,
the implication is that there will be difficulties building sets of
signatures that efficiently represent the motor fault operating
conditions for accurate motor fault classification. In general,
this confirms the well-known fact that it is harder to diagnose a
fault when a motor is lightly loaded [36]–[38]. This is an aspect
that is further elucidated in Section IV.

Here, Table II presents the accuracy of the broken bar
fault classification for the 5-hp motor at rated torque and for
two different ac drive output frequencies of 40 and 60 Hz,
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TABLE II
ACCURACY OF FAULT CLASSIFICATION FOR AN INDUCTION MOTOR WITH

ONE TO FOUR BROKEN BARS AT 40 AND 60 Hz BASED ON A TESTING SET

WITH 30 SAMPLES. THE TEST WAS CARRIED OUT AT RATED LOAD

TABLE III
ACCURACY OF FAULT CLASSIFICATION FOR AN INDUCTION MOTOR WITH

ONE TO FOUR INTERTURN SHORT CIRCUITS IN THE STATOR WINDINGS AT

60 Hz AND MOTOR LOADS OF 50%, 75%, AND 100% OF THE RATED

TORQUE BASED ON A TESTING SET WITH 50 SAMPLES

respectively. The results for 60 Hz are the same as previously
shown in Table I. The testing set for the results at 40 Hz contains
30 samples instead of 50 samples because the original 5 s of
the current signals for each class is divided into six samples
instead of ten samples, which thus yields the three-phase stator
current envelope for each sample with a duration of 0.83 s
(5 s/six time series per class). This higher time sample for
the 40-Hz data compared to the 60-Hz data is necessary to
have samples with approximately the same number of envelope
periods for both cases. This time sample of each input signal
that is to be classified can be associated with the operating
motor frequency in order to automatically adjust the length of
the time sample to be used in the classification. One must bear
in mind that both the motor frequency and the length of time
sample are inversely proportional to each other. An accuracy
of 97% was obtained and is shown in Table II at 40 Hz for
four and eight fault signature mixtures, which means that this
method resulted in only one misclassification out of 30. Table II
includes the results with 90% classification accuracy for the 16
fault signature mixtures, which means that this method resulted
in three misclassifications out of 30. Meanwhile, an accuracy
of 77% for 32 fault signature mixtures was achieved, which
means that this method resulted in seven misclassifications for
the testing set with 30 samples.

The interturn short circuit is the second type of motor fault
investigated in this paper. This type of fault has five classes,
i.e., one to four interturn short circuits and a healthy case. The
results of accuracy for the classification of the interturn short
circuits in the 5-hp motor at 60 Hz and motor loads of 50%,
75%, and 100% of the rated torque are shown in Table III.
The motor fault classification is highly accurate with a low
standard deviation in all the cases shown in this table. These
results were based on a testing set with 50 samples. Thus, a
98% accuracy of classification was achieved, which means that

TABLE IV
ACCURACY OF FAULT CLASSIFICATION FOR AN INDUCTION MOTOR WITH

ONE TO FOUR BROKEN BARS OR ONE TO FOUR INTERTURN SHORT

CIRCUITS IN STATOR WINDINGS AT 60 Hz AND MOTOR LOADS OF

50%, 75%, AND 100% OF THE RATED TORQUE BASED ON

A TESTING SET WITH 90 SAMPLES

only one misclassification took place. Meanwhile, the case with
96% classification accuracy represents two misclassifications,
and so forth. The different levels of load torque did not result
in any loss of accuracy for the classification of interturn short
circuits. This lack of effect of load level on the classification
results of the shorted turn faults in comparison to the opposite
for the cases with broken bars is physically explained in the
next section. From Table III, it can be concluded that signa-
tures with 16 mixtures are sufficient to achieve a reasonably
high degree of accuracy. However, models with eight mixtures
can speed up the learning and classification processes without
significant losses in the fault classification accuracy. These
fault classification results and associated method constitute a
significant contribution for motor fault classification techniques
considering that the interturn short circuits represent 30%–40%
of the commonly occurring motor faults, with the knowledge
that in this method at hand, only the envelopes of the three-
phase stator currents are needed.

The last experiment was carried out for one to four broken
bars, one to four interturn short circuits, and the healthy motor
case, which yield nine classes of operating conditions. Thus,
these nine classes yielded a testing set with 90 samples gen-
erated by a 10-fold cross-validation method. The results of the
accuracy of classification for the nine different motor operating
conditions for the aforementioned 5-hp motor at 60 Hz and
motor loads of 50%, 75%, and 100% of the rated torque are
shown in Table IV. The data in this table also show that a more
accurate classification result was obtained for fault signatures
with 32 mixtures for any level of motor load over 50% of the
rated torque, in which case only one of the 90 samples of the
testing set was misclassified, which yields a 99% classification
accuracy. These results for 32 fault signature mixtures can be
better observed in the so-called “confusion matrix” [35] shown
in Table V. The confusion matrix reports the performance of
a classifier. It is a square matrix with the dimension defined
by the number of classes. The sum of components of each
row must contain the same number of samples of the testing
set. Each combination of row i and column j contains the
number of samples of the testing set classified as the class of
the respective column j. A confusion matrix that represents a
perfect classifier is a diagonal matrix. Additionally, Table V
demonstrates that only one fault was classified as a broken
bar fault when it should have been classified as an interturn
short circuit. For clarification, it should be pointed out that
the headings for the confusion matrix in Table V are defined
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TABLE V
CONFUSION MATRIX FOR THE 99% CLASSIFICATION ACCURACY OF THE

INDUCTION MOTOR WITH ONE TO FOUR BROKEN BARS OR ONE TO

FOUR INTERTURN SHORT CIRCUITS IN STATOR WINDINGS AT 60 Hz
AND MOTOR LOADS OF 50%, 75%, AND 100% OF THE RATED

TORQUE BASED ON A TESTING SET OF 90 SAMPLES AND

WITH 32 FAULT SIGNATURE MIXTURES

as follows: 1B ≡ one broken bar, 2B ≡ two broken bars, 3B ≡
three broken bars, 4B ≡ four broken bars, H ≡ healthy, S1 ≡
one turn short circuited, S2 ≡ two turns short circuited, S3 ≡
three turns short circuited, and S4 ≡ four turns short circuited.
These results demonstrate the relatively high degree of accuracy
of fault classification that is associated with the use of the
method subject of this paper.

IV. DISCUSSION OF RESULTS

In this paper, a 5-hp induction motor was investigated for
the monitoring and diagnosis of broken rotor bars and interturn
short circuits in stator windings with three different magnitudes
of motor loads. The three-phase stator current envelope was
found here to be a powerful feature of the induction motor
for fault classification. Each healthy and faulty motor operating
condition yielded a signature generated from the three-phase
stator current envelope using the GMMs of RPS. The condi-
tional probability of a fault signature for any “unseen signal”
was computed for each given signature previously generated
during the training stage. Thus, this “unseen signal” was classi-
fied using the Bayesian maximum likelihood classifier.

The three-phase stator current envelope for broken bar faults
depends on the number and geometric distribution of the broken
bars. Two motors with identical ratings and with the same num-
ber of broken bars but with different geometrical distributions
of the broken rotor bars may yield a misclassification of this
fault, because the signatures are learned for a specific number
and distribution of broken bars. Different distributions for the
same number of broken bars may yield different signatures.
Thus, a signature learned for a specific number and distribu-
tion of broken bars cannot guarantee a correct classification
of the same number of broken bars for different geometrical
distributions. This is an open problem not only for the method
presented in this paper but also for other techniques that analyze
the stator currents [5], [7].

The presented method is exclusively based on the analysis of
the three-phase stator current envelopes. The inputs of the pre-
sented method are only the training and testing sets composed
from experimentally obtained samples of the three-phase stator
current envelopes for different motor operating conditions.
Thus, there is no need for any other information about the

induction motor or its various parameters during the training
and testing stages. Moreover, mathematical models of the IMs,
ac drives, or any other mathematical formulation or knowledge
about the IM are not required. This simplifies the motor fault
classification problem because complex calculations related to
IMs as well as any specific design information about each
individual motor for the purposes of fault diagnostics are not
involved. However, the presented method at this point needs
signatures built for each different fault at different speeds and
torques. This yields many signatures to represent the range
of all the possible motor operating conditions. Therefore, the
number of signatures may be reduced if the signatures built
for a specific operating condition, for example, rated speed and
torque, are scaled for any other different operating condition.
In this case, the signature generated for the rated conditions
must be associated with speed and torque in order to scale it
for use in any other motor operating condition. The speed can
be directly obtained from either the ac drive, a speed sensor, or
a sensorless speed estimator. The torque can be either measured
by a torque transducer or calculated through a sensorless torque
estimator. Thus, the signatures can be automatically redefined
for any value of speed and torque of an IM.

The presented method yielded a high degree of accuracy
of motor fault classification even with the IM running at dif-
ferent levels of load torque. This statement is best validated
in Table IV, which presents the accuracies of fault classifi-
cation for nine different healthy and faulty cases of the 5-hp
IM. Moreover, Table IV shows the accuracy of motor fault
classification for three different levels of load torque and four
different numbers of fault signature mixtures. Here, the number
of mixtures is manually defined through the analysis of the
classification results. From an investigation of Table IV, it can
be concluded that the best number of fault signature mixtures
is 32 because the accuracy remains high at 99% for any level
of motor load. However, the speed of the training and testing
stages of the presented method is directly related to the number
of fault signature mixtures. Thus, the presented method can
always be speeded up (hastened) in real time by using less fault
signature mixtures. From further examination of Table IV, it
can be concluded that an accuracy of over 97% was obtained
with the eight fault signature mixtures for any level of motor
load over 50% of the rated load, which is deemed reasonable
for general industrial applications. In this case, eight mixtures
satisfy the requirement for both a reasonable level of fault
classification accuracy and required time of the training and
testing processes.

The well-known difficulties normally associated with diag-
nosing motor faults at light loads [36]–[38] were also encoun-
tered here. It is observed that the accuracy of this diagnostic
method deteriorated for motor loads under 50% of the rated
load values. This is not a new difficulty, and other methods
documented in the literature suffer from similar difficulties
[36]–[38]. This can be physically attributed to the fact that
under light load, the rotor electric circuit approaches the high-
impedance no-load condition, in which the effect of any change
in the cage impedance can be masked due to its weak impact at
the stator terminals. Furthermore, from a magnetic field point
of view, at rated or near rated load, the currents in the bars of
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a squirrel cage act as a magnetic shield to the bulk of the rotor
iron core, and hence that core remains relatively unsaturated
or lightly saturated with a good degree of magnetic circular
symmetry (no saliency effects). When bar breakages do occur
at rated or near rated load conditions, the magnetic shielding
effect of the bars is lost at the location of such bar breakage with
a resulting higher degree of local magnetic saturation appearing
at that spot. Hence, the rotor’s circular magnetic symmetry is
lost, and an “apparent magnetic saliency or asymmetry” appears
in the rotor. This asymmetry rotates at slip speed with respect
to the synchronously rotating magnetic field, and this interturn
gives rise to the envelope appearing to enclose the three-phase
current waveforms. Hence, it is easier to diagnose such a fault
using such an envelope under such substantial motor loads. The
phenomenon exploited here in this method is muted or weak
at light loads and hence arises the difficulty in diagnosis below
50% of rated load for the 5-hp case study of this paper.

Although a short circuit between turns of two phases and
a short circuit in turns of all the phases due to overload or
blocked rotor are possible, an interturn short circuit generally
first occurs in just one phase. In this case, the stator current
envelope of each single phase is not equally modulated. The
stator current envelope of the healthy phases is slightly affected
by the faulty phase, while the envelope of the faulty phase
is highly modulated. Here, an analysis of the stator current
envelope of only one phase instead of the three phases cannot be
sufficient to correctly diagnose a faulty condition, particularly
if this analyzed phase is not the faulty phase. This addresses
the reason for the use of a three-phase stator current envelope
instead of a single-phase stator current envelope. Independent
of the phase in which turns are short circuited, the three-phase
stator current envelope associated with the method presented in
this paper is sufficient to classify interturn short-circuit faults.
It should be pointed out that difficulties were not encountered
in the diagnosis of shorted stator turns at light loads because
the fault is exclusively a stator circuit phenomenon, which is
detectable independent of the level of load that as mentioned
above largely affects the circuit of the rotor.

Additionally, the three-phase stator current envelope consti-
tutes an IM feature that is associated with the method subject
of this paper and not only helps monitor a healthy and faulty
condition but also diagnoses the number of interturn short cir-
cuits in stator windings or the number of broken rotor bars. This
diagnostic method yields further important information about
the motor operating condition, namely the fault severity. Here,
the fault severity is directly related to the number of broken bars
or the number of turns involved in an interturn short circuit.

V. CONCLUSION AND FUTURE WORK

This paper has presented a motor fault diagnosis method for
IMs based on three-phase stator current envelopes for broken
rotor bars and interturn short circuits in stator windings. Mo-
tor fault signatures were generated using GMMs of the RPS
transforms. The maximum likelihood of the signature generated
for an unseen acquired signal under the previously learned
signatures defines the fault class using the Bayesian maximum
likelihood classifier.

The high degree of accuracy evidenced through the results
suggests that the proposed method can constitute a powerful
tool for induction motor fault diagnosis. Moreover, this method
not only monitors the IM identifying whether the motor is
healthy or faulty but also diagnoses the severity of the fault, i.e.,
identifying the number of broken bars or the number of turns
involved in one interturn short circuit. This characteristic is very
import to prevent irreversible motor damages and unexpected
shutdown of industrial processes, and to reduce the downtime
and cost of production processes.

Future works will use independent training and testing sets.
The training set, in addition to containing actual experimentally
obtained results, may be augmented by healthy and faulty mo-
tor performance data generated by commercial finite-elements
software (Magsoft) based on finite-element methods, while the
testing set would be exclusively acquired from an experimental
setup or field-acquired data. This would allow the enlargement
of the nature of classes of faults to be analyzed and diagnosed.
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