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Abstract—In this paper, a new method for statistical estimation
of Mel-frequency cepstral coefficients (MFCCs) in noisy speech sig-
nals is proposed. Previous research has shown that model-based
feature domain enhancement of speech signals for use in robust
speech recognition can improve recognition accuracy significantly.
These methods, which typically work in the log spectral or cepstral
domain, must face the high complexity of distortion models caused
by the nonlinear interaction of speech and noise in these domains.
In this paper, an additive cepstral distortion model (ACDM) is de-
veloped, and used with a minimum mean-squared error (MMSE)
estimator for recovery of MFCC features corrupted by additive
noise. The proposed ACDM-MMSE estimation algorithm is evalu-
ated on the Aurora2 database, and is shown to provide significant
improvement in word recognition accuracy over the baseline.

Index Terms—Parameter estimation, robustness, speech recog-
nition.

I. INTRODUCTION

OBUSTNESS to additive noise remains a largely un-
R solved problem in automatic speech recognition research
today. Various approaches to combating degradation of recog-
nition performance due to noise distortion have been studied
[1]-[5], with some level of success. Many of the approaches
to building noise-robust recognition systems can be classified
into one of three primary categories: back-end adaptation
techniques, front-end enhancement algorithms, and alterna-
tive feature approaches. The first of these classes focuses on
adapting acoustic model parameters to better match the environ-
mental conditions present. The other approaches concentrate
the effort on signal parameterization. Enhancement algorithms
attempt to remove the noise distortion either from the acoustic
signals directly or from the features extracted from the signals.
The well-known Ephraim—Malah filter [6] is an example of
such an algorithm, as are Bayesian cepstral estimation models
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[2]. Systems that take the third approach attempt to extract fea-
tures that are affected less by the noise than traditional features
such as Mel-frequency cepstral coefficients (MFCCs). Often
the novel features are used in conjunction with the standard
feature set. Examples of features studied include frequency
subband features and coefficients derived from the phase of the
signals [7]-[9].

Some of the more successful approaches taken to date have
attempted to estimate true clean speech features given a noisy
speech signal, often in the log spectral domain. In this domain,
the interaction between the speech and noise signals is non-
linear, resulting in high complexity of compensation models
even when the speech and noise signals are assumed indepen-
dent. A common method for dealing with this issue involves the
use of a Taylor series expansion to make the compensation al-
gorithm tractable [3], [10], [11]. As a result, the reliability of the
estimator depends on the choice of an expansion point. Because
the optimal expansion point is not known a priori, the algorithm
may become iterative. A method for finding a reasonable initial
expansion point is still required.

In this paper, these issues are addressed with the introduction
of a minimum mean-square error (MMSE) estimator of Mel-fre-
quency cepstral coefficients (MFCCs). The estimation proce-
dure is noniterative and requires no Taylor series approxima-
tion. Additionally, the estimator works entirely in the cepstral
domain, without the need for an inversion of the discrete cosine
transform (DCT). The estimator is developed using a novel ap-
proach to modeling the interaction between speech and noise.
As a result, the new method models the noise distortion as ad-
ditive in the cepstral domain, leading to a closed-form solu-
tion to the estimation problem. The model is developed using
filter bank energy coefficients of the speech and noise signals
to match the computation of MFCC features. These coefficients
are assumed to be Gamma distributed. In addition, the distor-
tion of the cepstral coefficients is assumed to have a Gaussian
distribution. These assumptions, which are discussed in the fol-
lowing section, lead to a tractable solution for the estimator. The
proposed estimator performs as the front-end parameterizer to
a speech recognition system. Recognition experiments run over
speech signals corrupted by various nonstationary noises at mul-
tiple signal-to-noise (SNR) ratios are used to demonstrate the
efficacy of the proposed approach. The proposed estimator is
compared to traditional baselines, in which no noise removal is
implemented, and to the well-known Vector Taylor Series (VTS)
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algorithm [11]. A theoretical comparison of the proposed esti-
mator and the VTS algorithm is given in the Appendix, high-
lighting the differences between the two front-ends.

The rest of this paper is structured as follows. In Section II,
the new distortion model is presented, and the MMSE estimator
for the MFCC’s is derived. Section III discusses the practical
issues of the algorithm used for robust recognition, followed by
a presentation of experimental validation of the given method.
In the final section, a discussion of the new noise compensator
appears, along with comments on the future directions of this
work.

II. MMSE ESTIMATION OF MFCC FEATURES

The MMSE estimator is found using the mean of the con-
ditional distribution of the clean (desired) cepstral coefficients
given the distorted values, as

¢ = Ele|d] (1)

where c is the vector of clean cepstral coefficients and d is the
vector of distorted coefficients. Using the definition of the mean
and Bayes’ theorem, this can be computed by

770 cp(d|e)p(c)de

¢ = . 2
¢ p(d) @

Previous research has used a Gaussian mixture model (GMM)
to represent the prior distribution, p(c),[2] and that approach is
used in this work as well. This GMM is built by training over
a large set of clean speech and helps mitigate any undesired
distortion to the features caused by poor estimates of the noise
signal present in the corrupted speech signals. A new distortion
model is proposed here to represent the conditional distribution.

A. Novel Statistical Distortion Model

The proposed additive cepstral distortion model (ACDM) is
derived by representing the true speech spectral (filter bank) co-
efficients as a function of the distorted spectral coefficients and
a gain vector, i.e.,

X=gey 3)

where x and y are the clean and distorted speech filter bank
energy coefficient vectors for a frame of speech, g is the appro-
priate gain vector, and e represents element-wise multiplication.
In the log domain, the relationship becomes

In(x) = In(g) + In(y) %)
where the log operation of a vector is given by

ln(z())

In z1
In(z) = (:) . 5)

In(z,)

1655

Multiplication of both sides of (4) by a discrete cosine transform
matrix, A, results in

Aln(x) = Aln(g) + Aln(y). (6)

Since A In(x) and A In(y) are, by definition, equivalent to ¢ and
d, respectively, substitution of these terms and rearrangement
gives

d=c—-Aln(g) @)

in which A In(g) represents the additive distortion in the cep-
stral domain. The gain variable, g, is treated as a random vector,
allowing the form for the conditional distribution p(d|c) to be
found, provided the distribution of g is known. To ensure that
the MMSE estimator of (2) has a closed-form solution, p(d|c) is
assumed to be Gaussian. This assumption can be justified with
the use of the central limit theorem [12], as p(d|c) is formed as
a linear combination of random variables that are exponentially
beta distributed. The number of variables in the summation that
produces the conditional distribution is 23, the size of the filter
bank, which is a value that is generally sufficient to produce
distributions that are very close to Gaussian [12]. The mean and
variance of the conditional can be computed as

Baje = ¢ — E[AIn(g)]
Saje = E[AIn(g)’] — E[AIn(g)]’ (8)

where Y4 is a diagonal matrix, since the gain variables are as-
sumed to be independent across frequency bins. The conditional
distribution of the gain variables is determined by using a linear
MMSE estimator, the Wiener filter, to represent the gain
Tk

L ©)
where x and n are the kth filter bank energy coefficients of the
speech and noise signals, respectively. Ideally, x}, is a known
quantity, since c is given. However, the values for x cannot be
fully recovered from c, as the discrete cosine transform used is
not necessarily invertible. A least-squares fit transform of the
coefficients back into the log spectral domain is possible, but
inclusion of that transform into the estimator would require that
the algorithm become iterative. Therefore, as an approximation,
x, and ny are both treated as random variables, and are as-
sumed to be gamma distributed. Gamma distributions have often
been used to model speech time samples and spectra in prior
work [13]-[15] and an empirical goodness-of-fit test over clean
condition training data in the filter bank energy domain con-
firms that the gamma distribution has a chi-squared statistic an
order of magnitude better than a normal, uniform, exponential,
or Rayleigh distribution. If z;, and nj are assumed to have in-
dependent gamma distributions with parameters (., x, ) and
(aun,k, B), respectively, gi, can be shown to be beta distributed,
with

F(az,k + an,k)

1 oz p—1
L= ge) s gt
F(ar’k)l“(ar’k)( ) k

p(gr) = (10)



1656

where o, ;, and «, ;, are parameters derived from the distribu-
tions of z and n. Note that the beta value must be equivalent
for the two gamma distributions. The distribution for In(gy) is
known as the exponential beta distribution, and the mean and
variance can be computed by [16]

(11)
12)

MUln g, = Q/JO(az,k) - z/)O(Oém,k + an,k)
012ngk = 1(k) — Y1(aer + an k)
where 1y and v are the digamma and trigamma functions, re-
spectively [17]. The final form of p(d|c) is then given by

p(d|c) = N(d;c — Ap?, [A[Z9) (13)
where p9 and >9 are the mean and variance vectors computed
using (11) and (12). Inserting (13) into (2), and using the same
procedure found in [2], the MMSE estimator can be fit into a

standard quadratic form, and a closed form solution for the es-
timator can be found as

M
e=> Y [Wi(m)pg, + Wa(m)(d + Apf)]

Wi (m) = |A[Z? (5, + A7)

Wo(m) = X5, (25, + |A|D9) 7 (14)

where p¢, and X, are the mean vector and covariance matrix
of the GMM used for the prior model p(c) and

wyp(d|m
R — p(d|m) ) (15)
2m=1 wmp(d|m)
As in [2], p(d|m) is computed by
p(d|m) = N (d; puy, + Ap?, 35, + [A[Z7) . (16)

Examination of (14) shows that the final ACDM-MMSE esti-
mator is essentially a weighted average between the mean of
the distortion compensation factor d + ApY and the mean of
each component in the prior model, where the weighting is de-
termined by the ratio of variances of the conditional and prior
distributions. If the prior model was assumed to be uniform, the
estimator would essentially be equivalent to applying a Wiener
filter, though the computation is performed in the cepstral do-
main. The inclusion of the prior in the estimator forces the esti-
mate to more closely match a pattern of actual speech.

Because the trigamma function is monotonically decreasing
for positive numbers, for a given o, , the variance computed in
(12) increases along with «,,. Thus, as the estimated signal-to-
noise ratio decreases, this variance increases, and more weight
is given to the prior model in the estimation of the features. This
is desirable, as it is expected that the accuracy of our distortion
compensation factor will be worse for lower SNR values. The
use of the prior model then becomes especially important, so
that the negative effects caused by the inaccuracy of the distor-
tion factor are not as detrimental to the estimate of the features
and subsequently the robustness of the recognition system.
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III. ALGORITHM IMPLEMENTATION

The ACDM-MMSE estimator derived in the previous sec-
tion requires knowledge of the parameters of the distributions
of the speech and noise filter bank energy coefficients in order
to compute the u? and ¥9 (mean and variance) terms of (14).
A priori estimates for the speech and noise power are gener-
ated using noise estimation and spectral estimation algorithms.
The improved minima-controlled recursive averaging (IMCRA)
method [18] is used for estimation of the noise power. For the
spectral estimate, a decision-directed generalized Wiener filter
[19] is implemented. The form of the filter is

Se(w)

Hw) = 5o+ p5n(@)

7)
where p is a multiplier that controls additional noise suppres-
sion. The value p = 4 is chosen based on experiments run over
a development set. Because of the increased noise suppression,
this filter will sometimes significantly underestimate the speech
power. Consequently, the filter in (17) is bounded, resulting in
the modified form

Se(w)

H(w) = Sy (w) + min{pS,(w), Sy (w)}

(18)

where S, (w) is the spectral power value computed from the
distorted speech signal. Additionally, the spectral estimate ob-
tained using this filter is smoothed in frequency using a nor-
malized window. The Wiener filtering and smoothing process
is defined by

X(w)= > b(i)[H(w)Sy(w)]

i=—1

19)

where the b coefficients must sum to unity. The value used for
[ is one.

Once the a priori speech and noise estimates are generated,
the parameters o, and «,, can be computed. The values for the
noise and speech estimates, which are obtained by application
of the IMCRA algorithm and the modified Wiener filter, respec-
tively, are first converted from spectral coefficients to filter bank
energy coefficients by applying a Mel-spaced triangular filter
bank. The resulting values for the kth filter banks of the speech
and noise are treated as the means of the gamma distributions
for xj, and ny. Using the definitions of the mean and variance
for a gamma distribution, the alpha parameters can be computed
by

_ Ty N

Ay | = /B An k= ,8

where 2 and 7y, are the a priori estimates of the speech and
noise filter bank energy coefficients, and 3 is treated as a free pa-
rameter. Once the alpha values are computed, the values for the
mean vector pf and the variance matrix X9 can then be found
using (11) and (12). These mean and variance measures, and
subsequently the estimated values for the MFCC features, are
affected by the choice of 3. It has been observed that the choice
of an appropriate 3 is important for success of the estimation
algorithm, and that the computation of the mean is adversely

(20)
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AVERAGE WORD ACCURACIES FOR PROPOSED ESTIMATOR AND BASELINE gﬁ()BNI}]?:l’EINDS USING CLEAN-CONDITION TRAINED ACOUSTIC MODELS ON AURORA2
Front-end Set A Set B Set C Overall
ACDM-MMSE 81.64% 83.05% 82.03% 82.24%
No enhancement (baseline 1) 56.56% 52.98% 66.77% 58.77%
CMS enhancement only (baseline 2) | 65.17% 70.67% 66.39% 67.41%
VTS (256 mixture prior) 78.88% 80.11% 78.68% 79.22%
VTS (16 mixture prior) 67.00% 70.26% 68.03% 68.43%

affected by a poor choice of # more so than the variance. Be-
cause of this sensitivity, in the implementation of the algorithm
the computation of the mean from (11) is replaced by

T
Hin g, = IOg < ~ k (21)

Tk + ﬁk) '
This approach can be viewed as treating the speech and noise
a priori estimates as deterministic instead of stochastic for the
purpose of estimation of the mean of the conditional distribu-
tion. However, the variance of the conditional is still derived
using the statistical assumptions developed in the previous sec-
tions. Empirical observations have indicated that it is beneficial
to bound the variance computed in (14) to prevent impact from
occasional outliers. Values for (3 and the upper and lower bounds
of the variance of the conditional distribution in the MMSE es-
timator are chosen to optimize recognition accuracy over a de-
velopment set, resulting in 3 = 9000, and bounds of [1.1, 4.5].

The estimator is implemented to estimate the static cepstral
coefficients, including CO. The first and second derivative coef-
ficients are then computed from the estimated features. While it
is possible to compute all parameters for (14), including first and
second derivatives, it has been observed that doing so provides
no benefit in terms of recognition accuracy over the approach of
estimating static coefficients only.

While the IMCRA algorithm and decision-directed general-
ized Wiener filter are used for estimating the noise and speech
components, other methods could easily be used, such as min-
imum statistics [20] or Ephraim—Malah filtering [6]. The pro-
posed estimator is independent of the a priori estimators and
allows for the inclusion of spectral estimation in a feature do-
main compensation scheme.

IV. SPEECH RECOGNITION EXPERIMENTS

The proposed ACDM-MMSE estimator is tested using the
Aurora2 database [21]. Aurora2 is a speaker independent data-
base of connected digits, zero through nine, plus “oh.” The data
was originally collected under a clean environment, but has been
corrupted by various real-world noises at multiple SNR levels.
The data has also been dowsampled to 8 kHz, and filtered with
either a G712 or MIRS characteristic, depending on the set. Two
training sets, clean-condition and multicondition, and three test
sets, labeled A, B, and C, are provided. The clean-condition set
is left undistorted, while the multicondition set is corrupted with
subway, babble, car, and exhibition hall noises, matching the

noises in test set A. Test set B is corrupted by restaurant, street,
airport, and train station noises. Both training sets and test sets
A and B are filtered with the G712 characteristic. Test set C is
corrupted with the subway and street noises, but is filtered with
the MIRS characteristic to allow for the study of channel distor-
tion. For the experiments presented in this paper, the range of
SNR levels used is 0-20 dB.

An HMM is built for each word, each with 16 states and three
mixtures per state. A three-state silence model with six mix-
tures per state is also trained. This results in a total of 163 states
and 498 mixtures. The training procedure matches that of the
script provided by the Aurora2 database. The speech feature set
in all experiments consists of a 39-element vector containing
13 static MFCCs, including CO, along with first and second
derivative features. The proposed estimation system is used as
a front-end to a standard speech recognition system, which is
implemented using Sphinx-4 [22]. The static feature vector es-
timates are produced by first running the IMCRA noise esti-
mation algorithm and the decision-directed generalized Wiener
filter to give a priori estimates for the speech and noise filter
bank energy components, followed by application of (14). First
and second derivative coefficients are then computed from the
estimated static coefficients in the standard manner.

Results for two sets of experiments are presented, based
on the training set used to build the acoustic models. In the
clean-condition trained experiments, all acoustic models, as
well as the prior model used in the estimator are trained using
the clean-condition training set. In the multicondition training
experiments, the prior model is first learned over the clean-con-
dition training data. The proposed estimator is applied to
the multicondition training data, resulting in an “enhanced”
training set. This data is then used to train the acoustic models
for use in recognition experiments for the proposed system. The
baseline system is built by training the acoustic models directly
on the multicondition training data. Configuration of algorithm
parameters described in the previous section is executed using a
development set based on the multicondition training set, with
all models trained on the clean-condition set.

A summary of the clean-condition training experimental re-
sults is found in Table I, along with baseline comparisons. The
VTS method [11] is also evaluated and compared to the pro-
posed method. Like the ACDM-MMSE estimator, VTS uses a
prior distribution model trained over clean speech, but the fea-
ture estimation is done in the log-spectral domain as opposed to
the cepstral domain. As is the case for the proposed estimator,
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TABLE II
AVERAGE WORD ACCURACIES FOR PROPOSED ESTIMATOR AND BASELINE FRONT-ENDS USING MULTICONDITION TRAINED ACOUSTIC MODELS ON AURORA2

Front-end Set A Set B Set C Overall
ACDM-MMSE 89.80% 89.54% 89.87% 89.74%
No enhancement (baseline 1) 87.28% 85.75% 84.79% 85.94%
CMS enhancement only (baseline 2) | 88.63% 88.66% 89.24% 88.84%
VTS (256 mixture prior) 85.04% 84.73% 85.42% 85.06%
VTS (16 mixture prior) 81.33% 82.22% 81.99% 81.85%

the IMCRA algorithm is used to obtain the noise estimate for use
with the VTS algorithm. Cepstral mean subtraction (CMS) is ap-
plied to the features produced by the ACDM-MMSE front-end
as a postprocessing step, as well as the VTS front-end. These re-
sults are compared to two baselines, in which no explicit noise
modeling or removal is applied, one with CMS postprocessing
and one without.

Based on parameterization tuning experiments on a develop-
ment set, the number of mixtures used for the ACDM-MMSE
prior is 16. Two versions of the VTS method are employed: one
with 256 mixtures to match [11] and one with 16 mixtures to
compare more closely with the proposed method. Because of
the difference in number of mixtures, the ACDM-MMSE es-
timation algorithm is significantly faster than the 256 mixture
VTS algorithm. Recognition experiments for the 256 mixture
VTS method run in approximately 2.7 x real time as compared
to around 0.5x real time for the proposed estimation method.
The experimental time for the 16 mixture VTS system is com-
parable to the ACDM-MMSE system.

The proposed estimator outperforms all baselines, including
both versions of VTS. Inspection of the results for each of the
test subsets (by noise type and SNR) for clean-condition training
indicates that the proposed system gives superior performance
over the both the standard feature set and VTS estimated fea-
tures in all SNR levels 15 dB or lower and nearly equal num-
bers at the 20-dB SNR level. To see the effect of the prior distri-
bution, recognition is also run using the modified Wiener filter
described in (18) as the front-end. The overall accuracy for this
system is 77.33%, showing that inclusion of the prior model re-
sults in an absolute error reduction of 4.91%.

Each algorithm is also tested on clean data. The accuracy for
the ACDM-MMSE estimation method is 98.50%, compared to
98.97% for the VTS and a baseline of 99.12%. While the pro-
posed method causes some degradation in accuracy on clean
data, the amount is relatively small.

Results for the multicondition experiments are presented in
Table II. The relative improvement seen in these experiments is
smaller than that of the clean-condition experiments, but the im-
provement seen is still consistent. A modified Wiener front-end
system gives an overall accuracy of 89.27% here, showing that
inclusion of the GMM prior model results in an absolute error
reduction of 0.47%. The VTS algorithm does not perform well
on this task, actually decreasing the word accuracy in compar-
ison to the baseline.

As stated in the previous section, the ACDM-MMSE esti-
mator has a free parameter 3 which controls the scaling of the
conditional variance. To study the sensitivity of the algorithm
to this parameter, a series of clean-condition recognition exper-
iments are run, varying the value for 5. A range of values from
10 to 50000 is used, spaced logarithmically. The minimum and
maximum accuracies, averaged over all test sets, are 79.91%
and 82.80%. The lowest accuracy is a result of 3 = 50 000,
and all other accuracies are within 0.4% of the maximum. This
indicates that, provided the 3 value is not excessively large, the
proposed estimator is robust to variances in the actual value.

In addition to the recognition experiments presented, analysis
of the error of the MFCC estimates is executed. A relative mean
squared error (MSE) is computed for the static coefficients for
each frame in all test utterance between the estimated and clean
features. The baseline error is computed directly between the
corrupted and original clean features. No CMS is performed in
the error computations. A relative MSE value is computed for
each SNR in test sets A, B, and C and transformed into log scale
by

where ¢ is the frame index, ¢; is the sth clean cepstral coefficient,
and ¢; is the ith estimated or corrupted coefficient. Figs. 1-3
show the error trends for the baseline and proposed front-ends
for test sets A, B, and C, respectively. The ACDM-MMSE
front-end MSE is lower in every case, and the relative improve-
ment is quite consistent.

(22)

V. DISCUSSION

A new method for estimation of MFCC features for use in
robust speech recognition has been proposed. This approach
models the noise distortion as additive in the cepstral domain,
and makes use of assumptions of the statistical distribution of
the speech and noise in the spectral domain to derive the MMSE
estimator. Unlike some previous approaches to estimation of
speech features, the algorithm used is not iterative. Additionally,
the estimation is performed entirely in the cepstral domain. Ex-
perimental results show significant improvement in word recog-
nition accuracy in noisy connected digit utterances over a base-
line system with no feature enhancement.
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Fig. 1. Relative log mean-squared error of static MFCC features for baseline
and proposed front-ends on Test Set A by SNR level.

0 T T

baseline
*— ACDM-MMSE

5 | i

Relative MSE (dB)
o

— — ]
20 + —— —J
\\
——
T
25 + \
_30 L L 1
0 5 10 15 20
SNR (dB)

Fig. 2. Relative log mean-squared error of static MFCC features for baseline
and proposed front-ends on Test Set B by SNR level.

The success of the estimation algorithm depends primarily on
the quality of three components: the a priori noise power esti-
mates, the a priori speech power estimates, and the cepstral prior
model. The IMCRA algorithm is used for the noise estimate,
and a generalized Wiener filter is used for estimation of speech.
Improvement in these estimation algorithms is likely to lead to
improvement in recognition accuracy using ACDM-MMSE es-
timator.

The prior model used is a simple GMM trained over a large
set of clean speech. Its major contribution is to ensure that the
enhanced cepstral values are reasonable (i.e., they resemble ac-
tual speech). However, the prior model does not differentiate be-
tween different classes of phonemes, such as vowels and frica-
tives. Instead, all frames of speech use the same prior model,
which is a conglomeration of different classes of phonemes. If
the prior model could be made more specific for each individual
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Fig. 3. Relative log mean-squared error of static MFCC features for baseline
and proposed front-ends on Test Set C by SNR level.

frame of speech (i.e., a vowel model used for frames that are
likely vowels, a fricative model for frames that are likely frica-
tives, etc.), it is likely the estimator would produce yet more
accurate features. This is the focus of our continuing work.

APPENDIX

In this Appendix, a derivation of the VTS-1 estimation equa-
tion in the cepstral domain is presented, with the objective of de-
riving a result for comparison with the proposed ACDM-MMSE
estimator. We start with the well-known nonlinear acoustic dis-
tortion model

y' =x'+g(x',n),
g(x',n’) = log(i + €™ ™). (23)
Here, x’,n’, and y’ are the clean speech, noise, and corrupted
speech log filter bank coefficient vectors, respectively, and i is
the identity vector. Equation (23) is expanded around an initial
point x;, with a first-order Taylor series expansion, using n’ =
ny, to give

y' = (I + Vi g(x0,n0))x" + g(x0, 1) — Varg(x5, 1n9)X0.-
(24)
If both sides of (24) are multiplied by a DCT matrix, A, we have
(after splitting the first term)

Ay = A(I + Vx g(x(,ng) — I)x’

+Ax" + Ag(x(,n5) — AV g(xg,np)x5.  (25)

Which, using d = Ay’ and ¢ = AxX/, can be rewritten as

d = c+A(Vxrg(xp,n0))x" +A(g9(x5, nj) — Vi (X[, 0 ) X)) -
(26)
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The second term on the right side of (26) can be rewritten as

A(Vo g, 15))% = A(Vi g mp)) (AT A, (27)

We can then represent (26) as

c=d-Ac+b
A = A(Vyg(x0,mp))A ™"
b = A(Vxg(x0,n0)z0 — g(X0,10))- (28)

The MMSE estimator for c is found by

CMMSE = /Cp(c|d)dc

C
= /d — Ac+ bp(c|d)dc 29)
C

M
= Z p[m|d] /d — Ac+ bp(c|d,m)dc
m=0 c
(30)
where m is the index of a mixture in a GMM prior model of

clean speech. The integral can be split and terms can be rear-
ranged to give

M
¢ = P[m/|d] —A/cp(c|d7m)dc
m=0 o
+d/p(c|d,m)+b/p(c|d,m)dc . (3D
C c
Substituting fcp cld,m)dc = p,,, and fp c|d,m)dc = 1,

(31) can be transformed into

c= Z Wm{wlu'c,m + [d + fO]}
m=0
W, = —A = (=AV,g(x),n))A™1)
fO =b= A(g(xé]vni)) - Vx/g(xf), 1’16))(6)
Ym = P[m|d]. (32)

By comparing (14) and (32), we can see that, although the form
is similar, the weights on the two components for each mixture
m, the prior mean and the enhanced value, are not the same.
In the ACDM-MMSE estimator, they will always sum to unity
and are based on the relative variances of the two Gaussians
(prior and conditional). In the VTS equation, the weight for the
prior mean is not based on the variance of the prior or condi-
tional Gaussian and the weights will never sum to unity, since

the weight on the enhanced value is already 1. Also, the en-
hanced values fy and u9 are computed differently.
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