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ABSTRACT 

 
This paper presents the implementation of two nonlinear 
noise reduction methods applied to speech enhancement. 
The methods are based on embedding the noisy signal in a 
high-dimensional  reconstructed phase space and applying 
singular value decomposition to project the signal into a 
lower dimension. The advantages of these nonlinear methods 
include that they do not require explicit models of noise 
spectra and do not have the typical �musical tone� side 
effects associated with traditional linear speech enhancement 
methods. The proposed nonlinear methods are compared 
with traditional speech enhancement techniques, including 
spectral subtraction, Wiener filtering, and Ephraim-Malah 
filtering, on example speech utterances with additive white 
noise for a variety of SNR levels. The results show that the 
local nonlinear noise reduction method outperforms Wiener 
filtering and spectral subtraction but not Ephraim-Malah 
filtering, as had been suggested by previous studies. 
 

1. INTRODUCTION 
 
Speech enhancement methods endeavor to separate and 
remove contaminating noise from the speech signal of 
interest. Noise reduction techniques are crucial for human 
intelligibility and speech technologies such as speech 
recognition and speaker identification [1]. The conventional 
techniques used in speech enhancement typically rely upon 
models of the spectral characteristics of both noise and 
speech in order to perform the separation and filtering.  

As an alternative to these traditional techniques and to 
conventional frequency domain speech processing theory, 
interest has emerged into studying speech as a nonlinear, 
dynamical system [2, 3]. Nonlinear time series methods 
perform analysis and processing in a reconstructed phase 
space, a time-domain vector space whose dimensions are 
time-lagged versions of the original time series [4]. The 
reconstructed phase space is therefore simply a plot of the 
time-lagged signal vectors, a parametric graph of the time 
series in which geometric structures of the underlying signal, 
called attractors or trajectories, appear. Reconstructed phase 
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spaces have been shown to be topologically equivalent to the 
original system, if the embedding dimension is large enough 
[5]. This implies that the full dynamics of the system are 
accessible in this space, and for that reason, a phase space 
reconstruction potentially contains more information than a 
spectral representation [4, 6]. 

A noise free signal has a well-defined attractor structure 
that evolves and unfolds in a finite dimension. Truly random 
noise, however, is time independent and therefore spreads 
out into an infinite dimensional phase space without 
structure. An example of a reconstructed phase space for a 
typical vowel is shown in Figure 1. 

Figure 1: Phase space plot of phoneme /ow/ (τ =6, m = 2) 

 
Several different nonlinear noise reduction techniques 

exist that utilize a phase space for signal and noise 
separation [7]. These methods have been successfully 
applied to known deterministic chaotic systems as well as to 
experimental time series data [6-10]. The two approaches 
that are used in this paper are global and local projection 
methods that have previously been demonstrated on speech, 
with results superior to Ephraim Malah filtering over a small 
set of isolated phonemes [9, 10]. We extend this to 
comparison against several traditional methods and 
enhancement of full sentences. The techniques are 
particularly advantageous because they do not require 
estimation of either noise or speech spectra, which is a 
requirement of their linear counterparts, and do not have the 
�musical tone� side effects that typically arise in frequency 
domain methods as a result of spectral estimation errors.   
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2. DESCRIPTION OF METHODS 
 
The dynamical systems techniques presented here embed the 
noisy signal in a very high-dimensional phase space, where 
the underlying signal will have a characteristic attractor 
structure but the additive noise will be distributed throughout 
the space. The data is then projected to a lower dimension, 
the final embedding dimension, where the true dynamics of 
the system reside [6]. 
 
2.1. Parameters  
 
The time-lag used in a reconstructed phase space is typically 
guided by empirical analysis of key measures such as mutual 
information and autocorrelation [4, 6]. Too small of a time 
lag compresses the attractor, and too large of a time lag 
causes it expand out. The first zero of the autocorrelation 
function and the first minimum of the automutual 
information curve both give indication of which time lags 
may be desirable. Since the true embedding dimension of the 
time series is also unknown, it must also be determined 
empirically. The false nearest neighbors (FNN) algorithm is 
used to establish the dimension [6]. Algorithms for both of 
these tasks are available in [11]. Histograms of these metrics 
across a sample of speech phonemes are shown in Figure 1.  
 

Figure 2: Autocorrelation, mutual information, and FNN 

Based on these plots, a time delay of six and a final 
embedding dimension of five were selected for these 
experiments. The original embedding dimension before 
projection was chosen as ten.   
 
2.2. Global nonlinear noise reduction (GNNR) 
 
The global nonlinear projection scheme [12] is based on a 
decomposition of the high-dimensional data matrix of the 
embedded signal asserts. The projection is then accomplished 
using the dominant components of that decomposition. There 
is a relationship between this model and enhancement 

algorithms based on spectral sub-space decomposition [13], 
in the sense that for 1τ =  a reconstructed phase space is a 
standard data matrix and the decomposition and 
transformation matrices are identical to those of sub-space 
methods. 

The observed noisy time series x is zero-meaned and 
embedded in the phase space by creating vectors in m! . 
 
 ( 1)[ , , , ]i i i mx x x xτ τ− − −=" …  (1) 

 
where m is the embedding dimension, chosen significantly 
larger than the dimension of the attractor, τ is the time lag, 
and i is the time index. These vectors are compiled into a 
trajectory matrix, 
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and a singular value decomposition (SVD) is performed 
using 

 T=X USV  (3) 

Decomposing the trajectory matrix through an SVD can be 
thought of as approximating the attractor by a hyper-
ellipsoid [6]. The singular values of S represent the 
magnitude of the principle axes, and the right singular 
vectors V represent the directions of these axes. If the 
attractor is noise free, then some or even most of the singular 
values will be near zero. 

The signal and the noise is separated and filtered by 
putting the largest singular values from S into a new 
diagonal matrix S1 and projecting the data matrix via 

 1
T=X US V  (4) 

The number of singular values to be used is chosen 
appropriately to filter the subspace that contains the noise 
from the subspace that contains the signal of interest, which 
is the true dimension of the attractor. X  is the filtered 
version of the original trajectory matrix. 

To apply this method to speech enhancement, the speech 
utterance is first divided into frames of equal length, with 
fifty percent overlap between subsequent frames to reduce 
edge effects. The signal in each frame is then embedded in a 
phase space, and its trajectory matrix compiled (τ, the time 
lag as well as the embedding dimension, m, are input 
parameters to the algorithm). A SVD is performed on the 
trajectory matrix as described above, and an enhanced 
trajectory matrix is created. The rows of the trajectory matrix 
are time aligned and averaged to generate a one-dimensional 
time series. The final enhanced signal is generated using a 
straightforward overlap-and-add technique. 
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2.3. Local nonlinear noise reduction (LNNR) 
 
The local projection method [6-10] employs a similar 
strategy to that of the global method, except that the 
procedure is done locally in neighborhood regions along the 
attractor. Each region is analyzed using an SVD and 
projected as with the global method. Formulas (2)-(4) remain 
unchanged, except that they are applied within each region, 
using a smaller data matrix. This method has the significant 
advantage that it tracks the attractor within the phase space, 
capturing the underlying dynamical behavior of the system, 
and performs enhancement by modeling that dynamical 
behavior within each region. 

For application to speech enhancement, the speech 
utterance is again divided into frames with a fifty percent 
overlap and embedded in a phase space. The neighborhood 
regions in the phase space are found (the number of points in 
a neighborhood is an input parameter), after which the 
vectors in each neighborhood are zero-meaned and the local 
SVD computed. The data points are projected onto the 
dominant directions using equation (4) above. As before, the 
rows of the trajectory matrix are time aligned and averaged 
to generate a one-dimensional time series, and the enhanced 
signal is generated using an overlap-and-add technique. In 
the local method, the algorithm is iterated several times for 
convergence. The core algorithm to perform the noise 
reduction is available in [11]. Neighborhoods of fifteen data 
points were used, and the algorithm was iterated ten times.  
 
2.4. Comparative baseline methods 
 
2.4.1 Spectral subtraction 
 
Spectral subtraction [1] is a classic technique used in speech 
enhancement, and is the algorithm most often used for 
comparison purposes. The method estimates the noise power 
spectra from silent frames in the signal, and then subtracts 
the noise spectrum from the individual speech frame spectra. 
Reconstruction is done through a simple inverse DFT, using 
the enhanced magnitude spectrum and the original phase 
components. The implementation used here incorporates 
spectral flooring and uses fifty percent overlapping frames 
multiplied by a Hanning window to reduce edge effects. 
 
2.4.2 Wiener filtering 
 
Iterative Wiener filtering [1] constructs an optimal linear 
filter using estimates of both the underlying speech and 
underlying noise spectra. The noise spectrum is estimated 
from silence frames as in spectral subtraction, while the 
speech spectrum in each frame is estimated iteratively, 
beginning with the noisy signal spectrum and using the 
Wiener filter output to get an improved estimate. The 
version used here is unconstrained iterative Wiener filtering 
with all-pole modeling. Ten iterations were performed on 
each frame for convergence. Reconstruction is again done 
through the overlap-add technique. 
 

2.4.3. Ephraim-Malah filtering 
 
Ephraim-Malah filtering [14] is based on a maximum 
likelihood short time spectral amplitude estimator, modeling 
speech and noise spectral components as statistically 
independent Gaussian random variables. Although more 
complex to implement than spectral subtraction or Wiener 
filtering, it has several theoretical advantages, including 
intrinsically varying the degree of enhancement as a function 
of signal-to-noise ratio. 
 

3. RESULTS 
 

Ten example sentences were taken from the TIMIT data set 
[15], contaminated with  additive white Gaussian noise, and 
enhanced using the methods described above. 

The signal-to-noise ratio of the contaminated speech was 
varied from �10 to +10 dB. 
 
3.1. Performance criteria 
 
The performance measures used were signal-to-noise ratio 
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and the segmental signal-to-noise ratio 
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The classic SNR is not as meaningful as SSNR 
perceptually, because it is sensitive to outliers and 
fluctuations, but it is a commonly presented metric for 
enhancement and thus included.  Thresholds of �10 and 35 
dB were placed on the SSNR per frame, to match human 
perception more accurately [1].  
 
3.3. Results on additive white Gaussian noise 
 
Resulting SNR and SSNR numbers for additive white 
Gaussian noise, averaged across the ten example sentences, 
are shown in Figures 3 and 4. The amount of enhancement is 
more at lower initial SNRs, as is typical of nearly all speech 
enhancement methods. 

The LNNR method outperforms the GNNR method, 
indicating that the localization of the projection regions is an 
important part of using the phase space representation for 
enhancement. Compared to the baseline methods, the LNNR 
method outperforms traditional spectral subtraction and 
Wiener filtering, but is not as effective as Ephraim-Malah 
filtering. 
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Figure 3: SNR results for additive white Gaussian noise 

Figure 4: SSNR results for additive white Gaussian noise 

 
4. CONCLUSIONS AND DISCUSSION 

 
The nonlinear noise reduction schemes, and in particular the 
localized projection method, are clearly effective for 
enhancement. These approaches have the advantage of not 
requiring explicit spectral models for speech and noise, but 
also have the equivalent limitation that they cannot therefore 
take advantage of the information about the noise 
characteristics that is present during silence intervals. Since 
the errors produced are not due to spectral misestimation, 
common side effects such as the presence of extraneous tone 
patterns do not occur. 

One note of interest is that the results do not support the 
claims of some previous work [9, 10] that the LNNR method 
is superior to Ephraim-Malah filtering. This may be due to 
the fact that the comparisons in that work were carried out 
on isolated extended-length phonemes. Despite this finding, 
the method shows good performance superior to spectral 
subtraction and Wiener filtering, and given the potential 

benefits of nonlinear models further work seems warranted. 
Future research will focus on developing methods for 
incorporating explicit noise and signal models into the 
LNNR method, and performing more thorough evaluations 
of the methods, including perceptual studies.   
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