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ABSTRACT 
 
This paper presents a novel method for speech recognition by 
utilizing nonlinear/chaotic signal processing techniques to 
extract time-domain based phase space features. By exploiting 
the theoretical results derived in nonlinear dynamics, a 
processing space called a reconstructed phase space can be 
generated where a salient model (the natural distribution of the 
attractor) can be extracted for speech recognition. To discover 
the discriminatory power of these features, isolated phoneme 
classification experiments were performed using the TIMIT 
corpus and compared to a baseline classifier that uses MFCC 
features. The results demonstrate that phase space features 
contain substantial discriminatory power, even though MFCC 
features outperformed the phase space features on direct 
comparisons. The authors conjecture that phase space and 
MFCC features used in combination within a classifier will yield 
increased accuracy for various speech recognition tasks. 
 

1. INTRODUCTION 
 

Conventional speech signal processing techniques are predicated 
on linear systems theory where the fundamental processing space 
is the frequency domain [1]. Traditional acoustic approaches 
assume a source-filter model where the vocal tract is modeled as 
a linear filter. Cepstral analysis is then performed to separate the 
frequency domain characteristics of the vocal tract from the 
excitation source. The typical feature vector used by speech 
recognizers that results from this signal processing procedure are 
Mel frequency cepstral coefficients (MFCC). Although, these 
features have demonstrated excellent performance over the years, 
they are, nevertheless, rooted in the strong linearity assumptions 
of the underlying physics. 

As an alternative to these traditional techniques, interest has 
emerged in studying speech as a nonlinear system [2-6]. Under 
this framework the analytical focus shifts from the frequency 
domain to a different processing space called a reconstructed 
phase space. A reconstructed phase space is created by 
establishing vectors in m , whose the elements are time-lagged 
versions of the original time series as given in (1). 

 
,             (1) 
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where x is the original time series, m is the embedding 
dimension,τ is the time lag, and n is the time index. Geometric 
structures emerge in this processing space that are called 
attractors. An example of reconstructed phase space plot for a 
typical speech phoneme is illustrated in Figure 1 (τ = 6, m = 
2), and its characteristic attractor is clearly revealed. 
Reconstructed phase spaces have been proven to be 
topologically equivalent to the original system and therefore are 
capable of recovering the nonlinear dynamics of the generating 
system [7, 8]. This implies that the full dynamics of the system 
are accessible in this space, and for this reason, a phase space 
reconstruction and the features extracted from it can potentially 
contain more and/or different information than a spectral 
representation. 

 
Figure 1: Reconstructed phase space plot of the phoneme ‘/ow/’ 

 
2. RECONSTRUCTED PHASE SPACE PARAMETERS 

 
When presented with experimental data in the absence of expert 
or a priori knowledge, a key question arises when creating a 
phase space; how to discover the correct time lag and embedding 
dimension to ensure a proper reconstruction of the dynamics [9]. 
In order to tackle these questions, heuristics have been 
developed for providing guidance for a choice of the time lag 
and embedding dimension. A desirable property of time lags is 
to have as little information redundancy between the lagged 
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versions of the time series as possible. In order to achieve this 
property, the first zero of the autocorrelation function and the 
first minimum of the automutual information curve give an 
indication of what time lags are advantageous [9]. After 
determining the time lag, the embedding dimension can be 
chosen. To ascertain the embedding dimension, it is beneficial to 
discover the percentage of false crossings of trajectories of the 
attractor that occur for a particular embedding dimension. False 
crossings are an indication that the attractor is not completely 
unfolded, and therefore, the embedding dimension is too small. 
An algorithm called false nearest neighbors can be used to 
accomplish this task [9]. Given that speech is the signal of 
interest here, the algorithms were run over a sample of phonemes 
taken for the TIMIT speech corpus. Results are given in Figure 
2. The graphs show that an appropriate choice of time lag is six 
or seven with an embedding dimension of five. Using these 
results, all subsequent analysis is carried out using a time lag of 
six and an embedding dimension of five.  
 

 
Figure 2: Histogram plots for first zero of autocorrelation, first 

minimum of automutual, and false nearest neighbors for a 
sample of speech phonemes 

 
3. FEATURE SELECTION 

 
Previous work in applying reconstructed phase spaces for signal 
processing applications focused on its use for control, prediction, 
and noise reduction [10]. A few studies have been performed to 
explore the uses of reconstructed phase spaces for feature 
extraction. The features that were extracted from the phase space 
and applied to speech recognition/classification tasks were 
Lyapunov exponents and correlation dimension. These features, 
when used in unison with cepstral features, were reported to 
improve speech recognition accuracy [5, 6]. These quantities are 
important, because they are invariant in both the original and 
reconstructed phase space [9]. Furthermore, they are also 
invariant to different initial conditions. Despite their 
significance, there are several issues that hinder the measurement 
of these quantities for experimental data. The most important 
drawback is their sensitivity to noise [11]. This obstacle reduces 
their potential for discriminability among phonemes. 
Additionally, the automatic computation of these quantities via a 

numerical algorithm can be cumbersome and even arbitrary. The 
overall effectiveness of such invariant measures with respect to 
pattern recognition tasks remains an open research question.  

Another set of features that can be obtained from a 
reconstructed phase space relate to a quantity known as the 
natural measure or natural distribution of an attractor [9, 10]. 
The natural distribution is the fraction of time that the 
trajectories of an attractor spend in a particular neighborhood of 
the phase space, or simply, the distribution of points in the phase 
space as ∞→n . This distribution is also independent of initial 
conditions and invariant, if the time series is of infinite length 
and the initial conditions are in the basin of attraction or 
attracting set [9, 10, 12]. Given experimental data, an estimation 
of this distribution can be performed with a Gaussian Mixture 
Model (GMM).  

For implementation, the feature vector is given as, 
 
 

,    (2) 
 
 
where µ  is the mean vector (centroid of the attractor) and σr is 
the standard deviation of the radius in the phase space defined by 
 
 

(3) 
 
 
Τhe µ and σr in (2) zero-mean the attractor in the phase space 
and normalize the amplitude variation from phoneme to 
phoneme. Upon examination of (2), it is apparent that the natural 
distribution is contained in set of feature vectors that represent 
the time evolution of the system at each sample point, which 
captures the attractor structure in the reconstructed phase space. 
This distribution model, consequently, endeavors to discriminate 
phonemes according to the similarity of their characteristic 
attractor structure. This model captures the position of the points 
in the reconstructed phase space, but not the flow or trajectory of 
the attractor. Such trajectory information could also have 
discriminatory power in classifying phonemes. In order to 
capture the flow as the attractor evolves, first difference 
information can be included in the feature vector as given by  

 
 
    

.   (4) 
 
 
 
This feature vector contains the information for both the position 
of the embedded data points (natural distribution) and trajectory 
or flow of the attractor over time (first difference). This 
embedding, which includes the first difference elements, is also a 
valid reconstructed phase space according to the theory, because 
the first difference is merely a linear combination of time-
delayed versions of the original time series [10]. 
 

4. MODELING TECHNIQUE 
 

Statistical models are built over the reconstructed phase space 
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features using HTK [13]. The model is a one state Hidden 
Markov Model (HMM) with a Gaussian Mixture Model (GMM) 
observation PDF. The number of mixtures necessary to achieve a 
high-quality estimate far exceeds the commonly used number for 
MFCC features (usually 8-16 mixtures). The reason for this is 
that the complexity of the attractor pattern requires a large 
number of mixtures to adequately model it. Data insufficiency 
issues do not impede the estimation of a GMM with a large 
number of mixtures, however, because there is typically over one 
hundred times more data than in the MFCC case (one feature 
vector for each sample point). An example of the modeling 
technique applied to the reconstructed phase space features is 
demonstrated in Figure 3 for the phoneme ‘/aa/’. The attractor is 
the dotted line, while the solid lines are one standard deviation 
of each mixture in the model. The plot visibly demonstrates the 
ability of a GMM to capture the characteristic attractor structure 
of speech phonemes. 

 
Figure 3: GMM modeling of the reconstructed phase space 

features for the phoneme ‘/aa/’ 

 
5. EXPERIMENTS 

 
To investigate the discriminatory power of reconstructed phase 
space features, isolated phoneme classification experiments are 
performed. The motivation for performing isolated classification 
experiments versus continuous recognition is to determine how 
the features performed using only the available acoustic data in a 
phoneme segment, allowing one focus in on how the features 
compare on an acoustic level task. Using the expertly labeled, 
time-stamped phoneme boundaries present in TIMIT, all the 
phoneme exemplars from the “SI” and “SX” sentences are 
extracted according to these segmental boundaries. The 
phonemes are then folded according to the conventions 
discussed in [14] to give 39 classes. Using the predefined 
training partition present in the TIMIT corpus, parameter 
estimation (training) is carried out using these isolated phoneme 
segments. The testing is subsequently performed using isolated 
phonemes segments taken from the predefined testing partition. 

In order to determine how many mixtures are necessary to 
model the reconstructed phase space features, classification 
experiments are performed beginning at one mixture, using 
binary splitting to increment the number of mixtures. Figure 4 
illustrates the test classification accuracy as the number of 

mixtures is incremented. As evident from Figure 4, the 
approximate position of the elbow of the plot is at 128 mixtures. 
Therefore, a 128 mixture GMM properly captures the complexity 
of the distribution of phoneme attractors. 

 
Figure 4: Classification accuracy vs. number of mixtures 

Using a 128 mixture GMM, classification accuracies are 
compared to a baseline classifier that uses MFCC features. The 
parameters used for the MFCC feature extraction are 12 MFCC, 
log energy, deltas, and delta-deltas. A one state HMM with a 16 
mixture GMM observation PDF is built over the MFCC features 
using HTK [13]. Results from the baseline are compared to the 
reconstructed phase space features and are displayed in Table 1. 

 
 

Baseline  
Accuracy 

(%) 

12 MFCC feature set (16 mixtures) 50.34 

12 MFCC, log energy, delta, delta-
delta (16 mixture) 54.86 

 
Reconstructed Phase Space   

m = 5, τ =  6  (128 mixtures) 31.23 

m = 5, τ = 6, with first difference 
(128 mixtures) 38.06 

Table 1: Accuracy for isolated phoneme classification 

As evident from Table 1, the phase space features achieve 
approximately 75% the accuracy of the baseline features. Also, 
the first difference elements, which contain trajectory 
information, provide additional discriminatory power that 
resulted in 7 % increase in accuracy. 
  

6. DISCUSSION AND CONCLUSIONS 
 

The results confirm that phase space features contain significant 
discriminatory ability, even though MFCC features 
outperformed the phase space features on direct comparisons. 
Furthermore, the results show that the phase space features 
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generalize to a speaker independent task. This result is 
particularly interesting, because the source excitation was not 
removed from the phase space features as it is in the MFCC case 
via liftering. 

The authors conjecture that phase space and MFCC features 
used in combination within a classifier will boost accuracy for 
various speech recognition tasks. There are several reasons for 
this conjecture. The phase space features are extracted in a 
different domain than MFCC features. Additionally, the MFCC 
features frame the data, filter out the excitation information, and 
discard the phase information. However, the reconstructed phase 
space features do not require explicit frames and retain all the 
signal information. It is reasonable, therefore, to presume that 
the information content is not equivalent between the two feature 
spaces. 

In the light of the experimental results presented above, 
additional classification improvement can be made using the 
reconstructed phase space features. The experiments presented 
above utilized a five (m = 5, τ =  6 ) and ten dimensional 
embedding (m = 5, τ = 6 with first difference). Increased 
accuracy may result by employing a larger dimensional phase 
space to further expand the characteristic phoneme attractor 
structure. A larger phase space may produce larger differences 
between phoneme attractor characteristics, which may be 
overlapping in a smaller dimensional phase space. Analysis will 
also be performed to determine the effect that speaker variability 
has on the attractor structures of similar phonemes. Moreover, 
the phase space reconstruction methods employed in this work 
are general to any time series signal, and are not tailored for 
speech specifically. Investigation into the implementation of 
speech models, similar to the source-filter model employed in 
the linear regime, but applied to the reconstructed phase space, 
could yield valuable results. 

 A superior modeling technique will also be utilized for 
better performance. In future work, the authors plan on 
substituting the simple one state HMM (128 mixture GMM) 
with a fully connected HMM (one mixture GMM per state). The 
fully connected HMM model would capture the deterministic 
flow of the attractor in the phase space through the transition 
matrix probabilities in a convenient statistical framework. Work 
will also be performed to better model the direct trajectory 
information captured by using a better derivative estimate than a 
first difference approximation, such as the linear regression 
methods used in computing deltas and delta-deltas on spectrally 
based features. Also, based on the increase made through the 
inclusion of the first difference, higher order difference 
information (such as the second difference) may also boost 
results.  

Other supplementary work will consist of building a 
continuous speech recognizer using phase space features. 
Several different issues arise, when developing a recognizer 
using these features. The primary issue is that the reconstructed 
phase space feature vector speed is over one hundred times faster 
than in the MFCC case (one feature vector for each time sample 
in the phase space case versus one feature vector every ~20 ms 
in the MFCC case). In order to account for the speed differential, 
a large HMM model (~100-150 state) might be used to capture 
the rapid changes of the attractor during a phoneme utterance 
and to account for the time duration differences. This feature 
vector speed differential also makes fusion between the 

reconstructed phase space features and the MFCC features a 
complex problem. 

In conclusion, reconstructed phase space analysis is an 
attractive research avenue for increasing speech recognition 
accuracy. The methods have a strong theoretical justification 
provided by the nonlinear dynamics literature, and represent a 
fundamental philosophical shift from the frequency domain to 
the time domain, presenting an entirely different way of viewing 
the speech recognition problem, and offering an opportunity to 
capture the nonlinear characteristics of the acoustic structure. 
The initial experiments presented here affirm the discriminatory 
strength of this approach, and future work will determine their 
overall feasibility for both isolated and continuous speech 
processing applications. 
 

7. REFERENCES 
 

[1] J. R. Deller, J. H. L. Hansen, and J. G. Proakis, Discrete-
Time Processing of Speech Signals, IEEE Press, Second ed. 
New York, 2000. 

[2] M. Banbrook, S. McLaughlin, and I. Mann, "Speech 
characterization and synthesis by nonlinear methods," IEEE 
Transactions on Speech and Audio Processing, vol. 7, 1999. 

[3] G. Kubin, "Nonlinear Speech Processing," in Speech Coding 
and Synthesis, W. B. Kleijn and K. K. Paliwal, Eds.: Elsevier 
Science, 1995. 

[4] A. Kumar and S. K. Mullick, "Nonlinear Dynamical Analysis 
of Speech," Journal of the Acoustical Society of America, 
vol. 100, pp. 615-629, 1996. 

[5] V. Pitsikalis and P. Maragos, "Speech analysis and feature 
extraction using chaotic models," presented at IEEE 
ICASSP, Orlando, Florida, 2002. 

[6] A. Petry, D. Augusto, and C. Barone, "Speaker Identification 
using nonlinear dynamical features," Chaos, Solitons, and 
Fractals, vol. 13, pp. 221-231, 2002. 

[7] T. Sauer, J. A. Yorke, and M. Casdagli, "Embedology," 
Journal of Statistical Physics, vol. 65, pp. 579-616, 1991. 

[8] F. Takens, "Dynamical systems and turbulence," in Lecture 
Notes in Mathematics, vol. 898, D. A. Rand and L. S. 
Young, Eds. Berlin: Springer, 1981, pp. 366-81. 

[9] H. D. I. Abarbanel, Analysis of Observed Chaotic Data, New 
York: Springer-Verlag, 1996. 

[10] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 
vol. 7, Cambridge: Cambridge University Press, 1997. 

[11] E. Kostelich and T. Schreiber, "Noise reduction in chaotic 
time series: a survey of common methods," Physical Review 
E, vol. 48, pp. 1752-1763, 1993. 

[12] Y.C. Lai, Y. Nagai, and C. Grebogi, "Characterization of 
natural measure by unstable periodic orbits in chaotic 
attractors," Physical Review Letters, vol. 79, pp. 649-52, 
1997. 

[13] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D. 
Ollason, V. Valtchev, and P. Woodland, The HTK Book: 
Microsoft Corporation, 2001. 

[14] K. F. Lee and H. W. Hon, "Speaker-independent phone 
recognition using Hidden Markov Models," IEEE 
Transactions on Acoustics, Speech, and Signal Processing, 
vol. 37, pp. 1641-1648, 1989. 

 

I - 63

➡ ➠


