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Abstract – Two signal (waveform) analysis approaches are 

investigated in this paper for motor-drive fault identification – 
one linear and the other nonlinear. Twenty-one different motor-
drive operating conditions including healthy, 1 through 10 
broken bars, and 1 through 10 broken end-ring connectors are 
investigated. Highly accurate numerical simulations of current 
waveforms for the various operating conditions are generated 
using the Time Stepping Coupled Finite Element – State Space 
method for a 208-volt, 60-Hz, 2-pole, 1.2-hp, squirrel cage 3-
phase induction motor. The linear signal analysis method is 
based on spectral coherence, whereas the nonlinear signal 
analysis method is based on stochastic models of reconstructed 
phase spaces. Conclusions resulting from the comparisons of 
these two methods are drawn. 

Keywords – Fault diagnosis, induction motors, electric drives, 
time stepping finite elements, state space methods, spectral 
coherence, dynamical systems analysis. 

I. INTRODUCTION 
Induction machine adjustable speed drives (IMASDs) are 

popular motor-drive systems for a wide range of applications 
throughout the manufacturing, processing, energy, 
transportation, service, and medical industries. Applications of 
electric motor drives include among other things, material 
processing and handling, medical systems, electromechanical 
automation, propulsion and actuation, fluid flow systems, 
heating and air-conditioning systems, as well as in automotive, 
marine, and aerospace applications. The reliability of these 
drives can be critical. Drive failure may lead to plant shut 
down and resulting long repair cycle or even to major 
industrial accidents in mission critical applications. Fault 
identification and diagnostics can improve reliability by 
identifying incipient faults before major drive failure occurs, 
allowing drive repair/replacement to occur in a timely and 
orderly fashion. 

Given the importance of fast and accurate motor-drive 
diagnostic tools, this paper investigates two approaches to 
signal analysis – one linear and the other nonlinear – to 
identifying 21 different motor-drive configurations including: 
healthy, 1 through 10 broken bars, and 1 through 10 broken 
end-ring connectors. This is done using highly accurate 
numerical simulations of the current waveforms for the 
various operating conditions generated using the Time 
Stepping Coupled Finite Element – State Space (TSCFE-SS) 
method [1-5] for a 208-volt, 60-Hz, 2-pole, 1.2-hp, squirrel 
cage 3-phase induction motor. The linear signal method, based 
on spectral coherence, and nonlinear signal analysis method, 
based on stochastic models of reconstructed phase spaces, are 
compared and contrasted.  

A comprehensive survey of the literature of motor-drive 
diagnostics was undertaken by Benboizid [6]. As stated in [6], 
“performing reliable and accurate fault detection and 
diagnosis requires understanding the cause and effect of motor 
faults to motor performances.” The purpose of research in the 
area of fault signature analysis is to help understand this 
“cause and effect” and to develop methods for automatically 
recognizing faults, characterizing the fault types, and 
eventually for predicting the onset of these faults. Current 
methods for classification of fault types are primarily based on 
frequency-domain analysis of the signal harmonics, usually 
taken over a relatively large number of cycles in order to 
obtain sufficient frequency resolution. Classification 
approaches using such spectral features have included 
statistical pattern recognition using Naïve Bayes classifiers [7] 
as well as non-linear classifiers such as neural networks [8]. 

In our previous work in motor-drive diagnostics [9-11], a 
nonlinear phase space reconstruction method called Time 
Series Data Mining (TSDM) was used to classify with 100% 
accuracy 13 different motor operating characteristics. Using 
the torque profile generated by the TSCFE-SS method for 
each operating condition, a reconstructed two-dimensional 
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phase space was created. We then computed the first and 
second order statistical features of the projected state 
trajectory. These two features were used in a nearest neighbor 
learner and tested with 100% accuracy on sets of out of 
sample data of the torque profiles. These results showed that 
this method was capable of differentiating even among 
difficult motor faults such as amongst the four types of 
eccentricities dealt with in [9-11]. 

The most obvious drawback of the reliance on the torque 
profile as the input to the diagnostic system is the requirement 
of a torque transducer in an actual drive with its associated 
added costs and other motor-drive user concerns. Such cost 
could be justified in large and mission critical motor-drive 
systems where the additional cost of torque transducer would 
be relatively insignificant to the total cost of the system. 
Hence, it would be worth the additional information provided 
by the torque transducer in mission critical scenarios. 

Here, in order to address this drawback, we use the current 
waveforms and investigate a more sophisticated 
characterization of the phase space using techniques pioneered 
in the biomedical field for heart arrhythmia classification [12]. 
Additionally, we compare the nonlinear signal analysis 
method with a linear signal analysis approach, which uses 
spectral features such as coherence. 

The paper consists of five parts. The second section 
presents the TSCFE-SS method for generating operating 
characteristics of a great variety of motor-drive operating 
conditions. The third section discusses the reconstructed phase 
space based technique. The fourth section discusses the 
frequency analysis (spectral) approach. The fifth section 
presents the data and experimental design. The final section 
compares the results of these two approaches. 

II. TIME STEPPING COUPLED FINITE ELEMENT – STATE 
SPACE (TSCFE-SS) METHOD 

The TSCFE-SS method computes in sampled data form 
the time-domain waveforms and profiles of the input phase 
and line currents, voltages, developed power and torque of a 
motor as function of the particular magnetic circuit, winding 
layouts, and materials as well as inverter (controller) topology 
and operating conditions. These types of simulations can 
include faulty operating conditions such as open or short-
circuited portions of windings, breakages in squirrel-cage bars 
and end-ring connectors, shaft/rotor dynamic and static 
eccentricities, as well as faults within inverter topologies such 
as malfunctioning switching. Computations and simulations 
include the full effects of interaction of machine space 
harmonics with time-domain harmonics caused by the 
electronic switching on the overall motor-controller/drive 
performances [5, 13]. 

The TSCFE-SS modeling and simulation fully 
incorporates in rigorous and intricate detail the nonlinear 
effects of magnetic saturation in the machine, including the 
peculiar saturation patterns that result in a machine’s magnetic 
circuit due to winding and squirrel-cage faults. Thus, the full 
impact of these uneven and unusual saturation patterns on 
terminal current and voltage waveforms and motor torque 
profiles is included in the simulations; see references [5, 13] 

for details. The TSCFE-SS formulation is fully based on the 
natural machine windings flux linkage frame of reference, and 
thus the machine-controller models are fully integrated; see 
references [5, 13] for details. 

Figure 1 – Functional Block-Diagram/Flow Chart of the 
TSCFE-SS Method 

Figure 2 - Motor Cross Section 

Also, see Figure 1 for the functional flow chart block 
diagram, which summarizes the essence of this machine-
controller modeling and simulation method. Details of how 
this simulation technique can model motor faults such as 
squirrel-cage bar and end-ring connector breakages, as well as 
dynamic and static eccentricities were given earlier in 
reference [9-11]. Thus, this modeling and simulation 
technique and algorithm here constitutes the “engine” through 
which the databases on faulty motor winding current, voltage, 
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and developed torque waveforms/profiles are generated for the 
faults under study in this paper. The algorithm was applied to 
squirrel-cage breakages in a 1.2-hp, 120-volt, 3-phase, 2-pole, 
and 34-squirrel-cage bar induction motor whose cross-section 
is given in Figure 2. 

As illustrative examples of the output of the TSCFE-SS 
simulations used in this paper, the current waveforms 
generated for the healthy and 1, 3, and 6 broken bars are given 
in Figures 3, 4, 5, and 6, respectively. 

Figure 3 – Healthy Motor Current Waveform 

Figure 4 – One Broken Bar Current Waveform 

Figure 5 – Three Broken Bars Current Waveform 

III. PHASE SPACE RECONSTRUCTION METHOD 
The current waveforms given in Figures 3 through 6 are 

input to a phase space based classifier system for fault 
diagnostics. This classifier system is based on discrete 
stochastic models of reconstructed phase spaces. This 
approach is a new nonlinear signal analysis method based on 
dynamical systems theory. 

Figure 6 – Six Broken Bars Current Waveform 

The theoretical justification for this approach comes from 
Takens’ Theorem [14], in which it is shown that a 
topologically equivalent state space can be recovered from a 
single sampled state variable. This means that the dynamical 
invariants are also maintained [15]. Hence, from the current 
waveforms generated by a motor-drive system, an equivalent 
to the original state information can be recovered. This 
recovered state information would allow exact determination 
of the structure of the motor, hence a database of the state 
structures for various motor configurations could be 
constructed to which unknown motors could be compared for 
fault classification. The theory requires assumptiond that in 
practice cannot be met, such as infinite signal length, noise 
free signals, and known dimension of the original system. 
Given that the original simulations use a 37th order state 
model, a 75th dimension reconstructed phase space would be 
required. Fortunately, the theoretically sufficient conditions do 
not imply practical necessary conditions, especially for signal 
classification problems. In practice far smaller phase spaces 
are required. 

There are two parameters that must be learned to form a 
reconstructed phase space from a signal. These parameters are 
the time lag and the dimension. The standard method used to 
determine the time lags is based on automutual information 
[16]. This is an information theoretic measure that determines 
the amount of shared information between two time lags. The 
first minimum of the automutual information function is used 
as the lag. The standard method for determining the 
reconstructed phase space dimension is the false nearest 
neighbor method [16], which measures the percentage of 
points that are projected close, rather than are close because of 
the dynamics of the system. 

In previous work [9] discussed above, we used first and 
second order statistical characterizations of the reconstructed 
phase space of torque profiles as features for a nearest 
neighbor learner. The new approach [12] described here 
estimates a probability mass function as a model of the 
reconstructed phase space. The estimates of the probability 
masses form the feature set for a nearest neighbor learner [17]. 

Examining the reconstructed phase spaces can also 
motivate the reconstructed phase space based approach. The 
first step is to take the first difference of the current 
waveforms. This is a standard time series analysis technique 
[18]. We have found it useful in our previous fault diagnostic 
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work with motor data [9, 19]. The current first difference is 
defined as follows 

 ( ) ( 1)i i k i k∆ = − − , (1) 

where i(k) is the current waveform, and k is a time index. 
A two dimensional reconstructed phase space is created by 

plotting ( )26i k∆ −  on the x-y plane’s abscissa and ( )i k∆  on 
the ordinate. The standard automutual information method is 
used to determine the time lag of 26. Figures 7, 8, 9, and 10 
illustrate the two-dimensional reconstructed phase spaces of 
the healthy, one broken bar, three broken bar, and six broken 
bar current first differences, respectively. They are direct 
transformations of the current waveforms illustrated in Figures 
3, 4, 5, and 6. We can see that even with a two dimensional 
reconstructed phase space, the trajectories differ such that 
visual differences can be easily observed. The purpose of the 
proposed method is to capture the visual differences with a set 
of features. 

Figure 7 – Healthy Current First Difference Phase Space 

Figure 8 – One Broken Bar Current First Difference Phase 
Space 

The method to capture these differences is comprised of 
three major steps. The first step is to determine the time lags 
and reconstructed phase space dimension. This is done using 
the automutual information technique and the false nearest 
neighbor method discussed above. The TISEAN software was 

used for these calculations [20]. The first minima of the 
automutual information function were 24, 38, 26, 32, and 26 
for the healthy, one broken bar, three broken bars, six broken 
bars, and nine broken bars current first differences waveforms, 
respectively. The median of 26 was selected as the lag. Other 
lags were examined for their impact on the dimension returned 
by the false nearest neighbor method, but the selected lag of 
26 provided the best performance. Using the lag of 26 as an 
input to the false nearest neighbor method, the best false 
nearest neighbor dimensions were 5, 5, 4, 4, and 4 for the 
healthy, one broken bar, three broken bars, six broken bars, 
and nine broken bars current first differences waveforms, 
respectively. For the healthy motor there were 0.03% false 
nearest neighbors at dimension 5 and for the one broken bar 
there were 0.06% false nearest neighbors at dimension 5, so a 
dimension of 4 was used for the reconstructed phase spaces. 

Figure 9 – Three Broken Bar Current First Difference 
Phase Space 

Figure 10 – Six Broken Bar Current First Difference 
Phase Space 

The second step is to determine the regions from which the 
probability mass function will be estimated. This is done by 
partitioning each dimension of the reconstructed phase space 
into four strips. This is illustrated in two dimensions in Figure 
11. The intercepts that define the strips are learned from all the 
training examples such that each strip will contain 
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approximately the same occurrence of phase space points. 
Next, the probability mass function is learned for each training 
signal. These probability mass functions form the models to 
which new signals will be compared for classification. 

Figure 11 – Phase Space Partitioning 

The third step is to classify new test signals. This is done 
by first estimating the probability mass function of the new 
signal for its reconstructed phase space. The test reconstructed 
phase space is compared against each of the templates learned 
in the training phase using the Bhattacharyya distance [21]. 

 ( )
1

, ln
N

i i
i

d a b a b
=

 = −  
 
∑ , (2) 

where ai is the probability mass for a partition of the test 
signal, bi is the probability mass for a partition of a training 
signal, and N is the number of partitions. Examples of these 
partitions are illustrated in Figure 11. The test signal is 
assigned the class label of the nearest training signal according 
to the Bhattacharyya distance. 

IV. SPECTRAL COHERENCE METHOD 
We now compare the classification features based on the 

phase space reconstruction method to those based on 
traditional spectrally motivated features using signal-
processing techniques. To do this, we have constructed a 
similarity measure using spectral coherence [22] and applied it 
to the same current first difference waveforms used for phase 
space reconstruction. This approach is advantageous in that it 
allows a direct comparison of the frequency content between 
two different waveforms, does not rely on an explicit model of 
the underlying signal harmonics, and may be implemented on 
shorter signal windows than would be acceptable when doing 
the high-resolution analysis required for computing sideband 
amplitudes, such as [7, 8]. 

Spectral coherence is the normalized cross-power 
spectrum [22] computed between two signals X and Y, given 
by: 

 
2( )

( )
( ) ( )
XY

XY
XX YY

P
C

P P
ω

ω
ω ω

=  (3) 

where XYC is coherence, XYP is cross power spectral density, 
and XXP  and YYP  are the power spectral densities of X and Y 
respectively. Here, X and Y are the current first differences of 
the two motor waveforms to be compared. Welch’s average 
periodogram method [23] is used to compute the coherence, 
with overlapping Blackman windows and a 2-cycle window 
length, thus resulting in a 30Hz frequency resolution 
characteristic. 

There are several metrics that could be used to combine 
the coherence spectrum into a single measure of similarity 
between two waveforms. One such measure would simply be 
the sum of the spectral coherence over a particular frequency 
range of interest. Other measures based on coherence across 
the entire spectrum or on additional analysis of the coherence 
spectrum are also possible. For this work, we have used a 
simple coherence sum at all 60Hz harmonics, starting with the 
second harmonic. Classification is accomplished using a 
simple nearest neighbor algorithm [17], by computing the 
coherence sum of a given test signal with each training 
example, and choosing the fault type of the training signal 
with the highest coherence. 

Figure 12 - Healthy-Healthy Coherence Spectrum 

Figure 13 - Healthy - 1 Broken Bar Coherence Spectrum 
Figures 12 through 14 show example coherence spectra 

between a healthy motor segment and several training 
waveforms, including another healthy segment as well as one 
broken bar and six broken bar fault scenarios. The plots 
indicate differences within the structure of the coherence 
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spectra and also a generally higher coherence between the 
segments of the same type. 

Figure 14 - Healthy - 6 Broken Bar Coherence Spectrum 
V. DATA AND EXPERIMENTAL DESIGN 

The data set consists of 5 cycle segments taken from the 
first difference of the steady state current simulations. A total 
of 20 segments from each operating mode (healthy, 1-10 
broken bars, 1-10 broken connectors) were used for these 
experiments. The data was divided into training and testing 
sets using a tenfold cross validation approach, giving ten 
independent experimental runs where each run consisted of 
90% of the waveform segments being used for training and 
10% of the segments being reserved for testing. Overall results 
were compiled into a single accuracy number. 

Figure 15 - Block diagram of phase space reconstruction 
method for fault identification 

Each of the proposed methods were used to implement a 
simple nearest neighbor classifier based on the distance 
metrics described in the two preceding sections, 

Bhattacharyya distance in the case of phase space 
reconstruction and summed harmonic coherence in the case of 
the coherence-based method. Classification is thus 
accomplished by comparing each test segment to all of the 
training segments and selecting the class corresponding to the 
closest of these.  Block diagrams summarizing each of the two 
approaches are shown in Figures 15 and 16. 

Figure 16 - Block diagram of coherence spectrum method 
for fault identication 

Each of the methods resulted in 100% accuracy over the 
simulated waveform test set. It should be noted that the 
simulated data waveforms are for static speed and load 
conditions and are also unaltered by measurement noise that 
would exist with current sensors in the field, so that such high 
accuracies in the field are probably not achievable. However, 
the results do indicate great promise for very fast response 
fault identification methods, which require relatively short 
analysis windows and are free of the need for explicit 
sideband harmonic models or estimates. 

VI. CONCLUSIONS 
In our previous work [9], we used the torque profile as 

input to the fault identification algorithm. In that work [9], 
100% accuracy was achieved in classifying 12 operating 
conditions studied using first and second order statistical 
characterizations of the reconstructed phase space. The 
drawback to using the torque profile is the added cost of a 
torque transducer in an actual motor-drive, hence in this paper 
we investigated using the current waveform as the input to two 
different fault identification algorithms. 

Both the linear signal analysis and nonlinear signal 
analysis algorithms were capable of classifying all 21 
operating conditions.  Advantages of these methods over those 
based on harmonic sideband models include in particular the 
capability for operating on short analysis windows, thus 
allowing faster response time for identifying faults. 
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