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Abstract � This paper develops the foundations of a 
technique for detection and categorization of dynamic/static 
eccentricities and bar/end-ring connector breakages in squirrel-
cage induction motors that is not based on the traditional 
Fourier transform frequency domain spectral analysis concepts. 
Hence, this approach can distinguish between the �fault 
signatures� of each of the following faults: eccentricities, broken 
bars, and broken end-ring connectors in such induction motors. 
Furthermore, the techniques presented here can extensively and 
economically predict and characterize faults from the induction 
machine adjustable speed drive design data without the need to 
have had actual fault data from field experience. This is done 
through the development of dual-track studies of fault 
simulations and hence simulated fault signature data. These 
studies are performed using our proven Time Stepping Coupled 
Finite Element-State Space method to generate fault case 
performance data, which contain phase current waveforms and 
time-domain torque profiles. Then from this data, the fault cases 
are classified by their inherent characteristics, so called 
�signatures� or �fingerprints�. These fault signatures are 
extracted or �mined� here from the fault case data using our 
novel Time Series Data Mining technique. The dual-track of 
generating fault data and mining fault signatures was tested 
here on dynamic and static eccentricities of 10% and 30% 
percent of airgap height as well as cases of 1, 3, 6, and 9 broken 
bars and 3, 6, and 9 broken end-ring connectors. These cases 
were studied for proof-of-principle in a 208-volt, 60-Hz, 4-pole, 
1.2-hp, squirrel cage 3-phase induction motor. The paper 
presents faulty and healthy performance characteristics and 
their corresponding so-called phase space diagnoses that show 
distinct fault signatures of each of the above mentioned motor 
faults. 

I. INTRODUCTION 

Three-phase induction motors are presently in common 
use in a majority of electronically controlled ac 
adjustable/variable speed drives. During the past twenty 
years, there have been continuing efforts at studying and 
diagnosing of induction motor faults and associated 
performance characteristics as outlined in a major 
bibliographic paper by Benbouzid [1]. As stated in [1] 
�performing reliable and accurate fault detection and 
diagnosis requires understanding the cause and effect of 
motor faults to motor performances.� The bulk of the motor 
fault diagnostics papers cited in reference [1], such as 
references [2-6], rely substantially on frequency domain 
Fourier transform spectral analysis of motor currents. This 
paper does not rely on such frequency domain spectral 
analysis concepts, which do not distinguish very well the 
specific fault types. This is not the case here in identifying the 

fault types. The accrued advantages of our new techniques 
will become apparent to the reader in the results presented in 
this paper.  Accordingly, this paper demonstrates a method 
for not only simulating fault conditions but also more specific 
identification of faults in induction machine adjustable speed 
drives (IMASDs). 

Our approach to the problem of diagnosing faults in 
IMASDs is new and unique. First, knowing the design details 
of a motor-drive system, we can generate data for a plethora 
of fault conditions by Time Stepping Coupled Finite 
Element-State Space (TSCFE-SS) [2, 7-10] simulations. This 
is without the need to encounter and acquire data for such 
faults in actual field experience with IMASDs. Second, using 
Time Series Data Mining (TSDM) [11, 12], hidden patterns 
and nuances of differences between healthy performance 
signatures and various fault signatures can be identified. 
These fault signatures reveal the severity (percentage of 
airgap height) of dynamic and static eccentricities, the 
severity (approximate number) of broken squirrel-cage bars, 
and the severity (approximate number) of broken end-ring 
connectors. That is, this approach automatically and 
efficiently identifies and makes use of the data of these fault 
signatures in fault diagnostics. 

The faulty operations being studied here include: 10% 
and 30% degrees of static and dynamic eccentricities, as well 
as 1, 3, 6, and 9 broken bars in addition to 3, 6, and 9 broken 
end-ring connectors [2, 9]. The advantage of this dual track 
method lies in its rigor in predicting effects of motor faults on 
performance. The second portion of this dual track identifies 
and extracts hidden patterns and nuances that are 
characteristic and predictive of specific faults through data 
mining of the fault signatures. 

Accordingly, this paper presents the development of a 
comprehensive set of algorithms for fault simulation, and 
fault identification/diagnosis in IMASDs. Specifically, we 
deal here with motor shaft eccentricities and one broken bar 
in a side-by-side comparison with other squirrel cage 
breakages (broken bars and broken connectors). Initial broken 
bar and broken connector analysis was given in an earlier 
paper [13], and only an update of these results is given here 
for the purposes of comprehensive comparison between 
eccentricities and squirrel-cage breakages.  
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II. TIME STEPPING COUPLED FINITE ELEMENT-STATE SPACE 
METHOD 

The TSCFE-SS technique computes on a time instant-by-
instant basis (time profiles/waveforms) the input phase and 
line currents, voltages, developed power, and torque of a 
motor as functions of the particular magnetic circuit, winding 
layouts, and materials as well as inverter (power conditioner) 
operating conditions. Computations include the full effects of 
interaction of machine space harmonics with time-domain 
harmonics due to modern fast electronic switching on overall 
motor-controller/drive performance [10, 14]. Thus, the 
TSCFE-SS algorithms can also be used in parametric design 
studies. 

Fig. 1. Functional Block-Diagram/Flow Chart of the TSCFE-SS Method. 

The TSCFE-SS aspect fully incorporates the nonlinear 
effects of magnetic saturation in the machine and makes full 
use of the natural machine winding�s frame of reference, for 
details see [2, 7-10]. Also, see Fig. 1 for the functional flow 
chart block diagram, which summarizes the essence of this 
approach. Hence, again this assures inclusion of all 
significant space harmonics due to the physical design and 
nonlinear nature of the motor�s magnetic circuit, as well as 
the time harmonics generated from the inverter switching in 
the motor-drive modeling and simulations. Accordingly, the 
simulated fault signatures are derived from time-domain 
phase current and voltage waveforms, and from simulated 

instantaneous torque profiles that rigorously incorporate the 
motors� design characteristics. 

Fig. 2.  Motor Cross Section 

The state model for the 1.2 hp motor, the cross-section of 
which is given in Fig. 2, was derived from generalized 
machine theory using the natural abc frame of reference, and 
the inverter and machine models were integrated. The overall 
machine-inverter network model of Fig. 3 ensued. The state 
variables in this model are the a, b, and c armature windings� 
flux linkages as well as the 34 flux linkages of the 34 
squirrel-cage loops under healthy motor conditions, see the 
motor�s cross section of Fig. 2 and the developed squirrel-
cage loop diagram of Fig. 4. Again, for details, references [2, 
7-10] should be consulted. To represent bar breakages and 
end-ring connector breakages the squirrel-cage loops need to 
be disturbed according to patterns such as shown in Figs. 5 
and 6, respectively. For further details reference [2] should be 
consulted. 

Fig. 3. Schematic of Inverter-Motor Network Graph With Y-Connected Stator Winding 
Configuration 

As to the cases of static and dynamic eccentricities, those 
were modeled by disturbing the rotor�s location and 
consequently its FE grid�s location as shown schematically in 
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Fig. 7. The schematic in Fig. 7 can represent the static and 
dynamic eccentricities depending on which of the two points 
separated by the distance, δ, are made to be the axis of rotor 
rotation, for details reference [9] should be consulted further. 
In essence, in static eccentricity the airgap takes the shape of 
a stationary crescent-like pattern, while in dynamic 
eccentricity the airgap take the shape of a continuously 
modulated revolving crescent.  

Fig. 4. Schematic Representation of the Modeling of a Healthy Cage 

Fig. 5. Schematic Representation of the Modeling of a Broken Rotor Bar 

Fig. 6. Schematic Representation of the Modeling of a Broken End-Ring Connector 

The TSCFE-SS model yields the steady state time-
domain profiles of the change in all winding (loop) 
inductances under actual time-varying saturation conditions, 
and all the steady state time-domain profiles/waveforms of 
the developed machine torque and all the 37 winding currents 
(3 are the a, b, and c stator armature currents, the remainder 
are the squirrel-cage loop currents whose number is 34 or less 
depending on the pattern of bar/connector breakages being 
simulated). 

Fig. 7. Schematic Representation of Airgap Eccentricity 

III. TIME SERIES DATA MINING METHOD 

The TSDM method, the second track of the dual track 
approach, overcomes limitations (including stationarity and 
linearity requirements) of traditional time series analysis 
techniques by adapting data mining concepts for analyzing 
time series. Based soundly in dynamical systems theory [15], 
the TSDM method reveals hidden patterns in time series data 
(current and voltage waveforms as well as time-domain 
torque profiles). A clear distinction is shown here between 
the various faulty and healthy modes of motor operation. Our 
approach provides a definite new advantage over frequency-
spectrum Fourier transform techniques particularly used for 
fault diagnostics by earlier investigators [2-6]. 

A process called time-delay embedding [16] is used to 
transform the torque time series into a reconstructed state 
space, also called a phase-space. Given the first difference 
torque time series ( ){ }, 2, ,k k Nτ∆Τ = ∆ = … , where 

( ) ( )1k kτ τ τ∆ = − − , k is a time index, and N is the number 
of observations, a two dimensional phase-space is created by 
plotting ( )10kτ∆ −  on the x-y plane�s abscissa and ( )kτ∆  
on the ordinate. See Figs. 14 through 25 for examples of such 
phase-spaces. 

The feature used for distinguishing between 
reconstructed phase-spaces generated for different healthy 
and faulty modes of motor operation is the so-called radius of 
gyration [17] (which is used in this work as a fault 
identification parameter) around the center of mass of the 
points in the phase-space, where each point in the phase-
space is given a unit mass. The radius of gyration, r, is 
calculated as follows [17]: 
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plotting ( )x k l−  on the x-y plane�s abscissa and ( )x k  on the 
ordinate, the square of the distance is calculated by summing 
the squares of the differences between the phase-space 
point�s value in each dimension and its corresponding center 
of mass for that same dimension. The value mµ  is the center 
of mass for each phase-space dimension. 

This radius of gyration feature is a sufficient first 
approximation of the phase-space to allow distinguishing 
between the motor�s healthy mode of operation and various 
squirrel-cage breakage faults being presented here. It is also 
sufficient to identify the degree of the eccentricity, e.g. it 
allows the differentiation between modes of operation of 10% 
and 30% degrees of eccentricities. However, we introduce 
here a second feature, which is required to differentiate 
between the dynamic and static eccentricities of the same 
degree. This second feature is the standard deviation, σ , of 
the radius of gyration, which is defined as follows: 

 
( ) ( )( ) ( )

( )( )

2
22 2

1 1

1

N N

k l k l
N l d k d k

N l N l
σ = + = +

 − − 
 =

− − −

∑ ∑
. (4) 

Given a motor�s time-domain torque first difference as a 
time series (profile), and its corresponding reconstructed 
phase-space, the algorithm, for determining the unknown 
operating mode of the motor from which the time-domain 
torque profile was sampled, is best described as follows: 

Algorithm IDENTIFYMODE ( ), , ,R r σΣ  

Input. A set { }1 2, , , nR r r r= … of the radii of gyration of the 
known operating modes, where n is the number of 
known operating modes. The radius of gyration for the 
unknown mode, r. A set { }1 2, , , mσ σ σΣ = …  of the 
standard deviations of the radii of gyration for the 
eccentricity modes of operation, where m is the number 
of known eccentricity modes of operation. The standard 
deviation of the radius of gyration for the unknown 
mode, σ . 

Output. The identified mode of operation. 

1. { }( )index min :i r r r R′ ′= − ∈ . The index operator 
yields the �index of the mode� with the closest radius of 
gyration to the unknown mode. 

2. if i is an index for an eccentricity mode of operation 

3.   then  Form ′Σ  a subset of Σ  with the standard 
deviations of the radii of gyration that have the 
same degree of eccentricity as the mode of 
operation corresponding to the index, i. For 
example if the index i corresponds to a 30% 
dynamic eccentricity, ′Σ  has as elements the 
standard deviations of the radii of gyration for the 
30% static eccentricity and the 30% dynamic 
eccentricity. 

4.  { }( )index min :j σ σ σ′ ′ ′= − ∈Σ . The index 
operator yields the �index of the mode� with the 
closest standard deviation of the radius of gyration 
to the standard deviation of the radius of gyration 
of the unknown mode. 

5.  return the eccentricity mode of operation 
corresponding to the index j. 

6.   else return the mode of operation corresponding to the 
index i. 

IV. TSCFE-SS SIMULATIONS 

Simulations of the healthy cage case; the 10% and 30% 
static and dynamic eccentricity cases; as well as the 1, 3, 6, 
and 9 broken bar cases; the 3, 6; and 9 broken end-ring 
connector cases were generated using our TSCFE-SS method. 
The resulting torque profiles for the simulation of the healthy 
rotor/cage case; the 10% and 30% static and dynamic 
eccentricity cases; and 1 broken bar case are given in Figs. 8 
through 13, respectively. The torque profile simulations for 
the other cases were presented in [13]. The reconstructed 
phase-spaces of the torque first difference time series 
corresponding to the torque profile simulations for the 
healthy rotor/cage case and all the faulty rotor/cage cases 
mentioned above are illustrated in Figs. 14 through 25, 
respectively. 

 

Fig. 8. Healthy Motor Torque Profile Fig. 9. 10% Static Eccentricity Torque Fig. 10. 30% Static Eccentricity Torque 
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Fig. 11. 10% Dynamic Eccentricity Torque Fig. 12. 30% Dynamic Eccentricity Torque Fig. 13. One Broken Bar Torque Profile 

Fig. 14. Healthy Motor Torque First Difference 
Phase-Space 

Fig. 15. 10% Static Eccentricity Torque First 
Difference Phase-Space 

Fig. 16. 30% Static Eccentricity Torque First 
Difference Phase-Space 

Fig. 17. 10% Dynamic Eccentricity Torque First 
Difference Phase-Space 

Fig. 18. 30% Dynamic Eccentricity Torque First 
Difference Phase-Space 

Fig. 19. One Broken Bar Torque First Difference 
Phase-Space 

Fig. 20. Three Broken Bars Torque First Difference 
Phase-Space 

Fig. 21. Six Broken Bars Torque First Difference 
Phase-Space 

Fig. 22. Nine Broken Bars Torque First Difference 
Phase-Space 
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Fig. 23. Three Broken Connectors Torque First 
Difference Phase-Space 

Fig. 24. Six Broken Connectors Torque First 
Difference Phase-Space 

Fig. 25. Nine Broken Connectors Torque First 
Difference Phase-Space 

V. RESULTS 

From the TSCFE-SS model, we were able to obtain the 
time-domain simulations for longer time duration than the 
one cycle time series shown in Figs. 8 through 13 for the 
various torque profiles. Thus, one easily obtains an �out-of-
sample� or �test� torque first difference time series for each 
of the 12 torque profile (torque first difference) cases 
analyzed by time delay embedding and radius of gyration 
calculations. Accordingly, the radius of gyration as a 
classifying feature was confirmed in the �out-of-sample� or 
�test� version of each motor mode of operation. The results 
are shown in Tables I and II for the sample simulations, and 
all compare well on a one to one correspondence with the out 
of sample values given in III and IV, for each case by case, 
respectively. For example, the sample or training radius of 
gyration for the healthy motor mode of operation is 0.0571, 
while the out-of-sample or testing radius of gyration is 
0.0585. The sample and out-of-sample radii of gyration for 
the one broken bar motor mode of operation are 0.0892 and 
0.0892, respectively. Likewise, the sample and out-of-sample 
radii of gyration for the 10% static eccentricity motor mode 
of operation are 0.0466 and 0.0469, respectively. 

TABLE  I 
RADIUS OF GYRATION FOR TRAINING PHASE-SPACES  
Operating Mode Radius of Gyration 
Healthy 0.0571 
One Broken Bars 0.0892 
Three Broken Bars 0.0635 
Six Broken Bars 0.1100 
Nine Broken Bars 0.0999 
Three Broken Connectors 0.0247 
Six Broken Connectors 0.0432 
Nine Broken Connectors 0.0346 
10 % Static Eccentricity 0.0466 
30 % Static Eccentricity 0.0480 
10 % Dynamic Eccentricity 0.0474 
30 % Dynamic Eccentricity 0.0484 

 

TABLE  II 
STANDARD DEVIATION OF THE RADIUS OF GYRATION FOR TRAINING PHASE-

SPACES 
Operating Mode Standard Deviation of the Radius of 

Gyration 
10 % Static Eccentricity 0.0648 
30 % Static Eccentricity 0.0662 
10 % Dynamic Eccentricity 0.0654 
30 % Dynamic Eccentricity 0.0663 

 
TABLE  III 

RADIUS OF GYRATION FOR TESTING PHASE-SPACES 
Operating Mode Radius of Gyration 
Healthy 0.0585 
One Broken Bars 0.0892 
Three Broken Bars 0.0651 
Six Broken Bars 0.1108 
Nine Broken Bars 0.0994 
Three Broken Connectors 0.0272 
Six Broken Connectors 0.0441 
Nine Broken Connectors 0.0348 
10 % Static Eccentricity 0.0469 
30 % Static Eccentricity 0.0483 
10 % Dynamic Eccentricity 0.0473 
30 % Dynamic Eccentricity 0.0487 

 
TABLE  IV 

STANDARD DEVIATION OF THE  RADIUS OF GYRATION FOR TESTING PHASE-
SPACES  

Operating Mode Standard Deviation of the Radius of 
Gyration 

10 % Static Eccentricity 0.0648 
30 % Static Eccentricity 0.0662 
10 % Dynamic Eccentricity 0.0653 
30 % Dynamic Eccentricity 0.0664 

 
The results of the classification algorithm are shown in 

Tables V through VII. The headings for the tables are as 
follows: H � healthy motor, B1 � One Broken Bar, B3 � 
Three Broken Bars, B6 � Six Broken Bars, B9 � Nine Broken 
Bars, C3 � Three Broken Connectors, C6 � Six Broken 
Connectors, C9 � Nine Broken Connectors, S10 � 10% Static 
Eccentricity, S30 � 30% Static Eccentricity, D10 � 10% 
Dynamic Eccentricity, D30 � 30% Dynamic Eccentricity, 
respectively. The first column gives the actual mode of 
operation. The first row indicates the training radius of 
gyration that was used. The cells of Tables V and VI are the 
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|Training radius of gyration (given by the column heading) � 
Testing radius of gyration (given by the row heading)|. The 
minimal difference in each row, and thus the classification for 
all but the eccentricity motor modes of operation, is bolded. 
The cells of Table VII are the |Training standard deviation of 
the radius of gyration (given by the column heading) � 
Testing standard deviation of the radius of gyration (given by 
the row heading)|. The minimal difference in each row, and 
thus the classification, is bolded. The results illustrated in 
Tables V through VII confirm the validity of the approach, 
because of the small magnitudes of the absolute differences 
of these bolded radii of gyration and the absolute differences 
of these standard deviations of radii of gyration, in 
comparison to all the other differences in the tables 
(matrices). 

TABLE V 
ABSOLUTE DIFFERENCES BETWEEN TRAINING AND TESTING RADII OF 

GYRATION (X10-2) PART I 
 H B1 B3 B6 B9 C3 
H 0.143 3.069 0.503 5.151 4.136 3.384 
B1 0.803 0.002 2.567 2.080 1.066 6.454 
B3 5.368 2.409 0.156 4.491 3.477 4.043 
B6 4.236 2.157 4.722 0.075 1.089 8.609 
B9 2.987 1.025 3.590 1.057 0.043 7.477 
C3 0.648 6.199 3.634 8.281 7.267 0.253 
C6 2.226 3.859 1.294 5.941 4.927 2.593 
C9 1.021 5.437 2.872 7.519 6.505 1.015 
S10 0.879 4.232 1.667 6.314 5.300 2.220 
S30 0.981 4.090 1.525 6.173 5.158 2.362 
D10 0.840 4.193 1.628 6.275 5.261 2.259 
D30 0.143 4.051 1.486 6.133 5.119 2.401 

 
TABLE VI 

ABSOLUTE DIFFERENCES BETWEEN TRAINING AND TESTING RADII OF 
GYRATION (X10-2) PART II 

 C6 C9 S10 S30 D10 D30 
H 0.861 2.386 1.194 1.053 1.109 1.012 
B1 3.932 5.457 4.265 4.124 4.180 4.083 
B3 1.521 3.046 1.854 1.713 1.769 1.672 
B6 6.086 7.612 6.420 6.279 6.335 6.238 
B9 4.954 6.480 5.288 5.147 5.203 5.106 
C3 2.269 0.744 1.936 2.077 2.021 2.118 
C6 0.070 1.596 0.404 0.263 0.319 0.222 
C9 1.508 0.018 1.174 1.315 1.259 1.356 
S10 0.303 1.223 0.031 0.110 0.054 0.151 
S30 0.161 1.365 0.173 0.031 0.087 0.009 
D10 0.263 1.262 0.070 0.071 0.015 0.112 
D30 0.122 1.404 0.212 0.071 0.127 0.030 

 
TABLE VII 

ABSOLUTE DIFFERENCES BETWEEN TRAINING AND TESTING STANDARD 
DEVIATION OF THE RADII OF GYRATION (X10-2) PART II 

 S10 S30 D10 D30 
S10 0.003 0.140 0.057 0.155 
S30 0.147 0.004 0.086 0.011 
D10 0.052 0.091 0.008 0.106 
D30 0.160 0.017 0.100 0.002 

 
In other words, the classification accuracy on the out-of-

sample or testing data is 100%. Beyond the classification 
accuracy, it is significant to point out that the classifications 
are robust in the sense that for most of the classifications the 
next nearest class has absolute difference of radii of gyration 

that is one to two orders of magnitude greater than the correct 
class. 

VI. LARGE SCALE IMPLEMENTATION 

This proactive approach to fault diagnostics can head off 
the costly and catastrophic cascading of faults that lead to 
plant shutdowns and consequent long repair/maintenance 
periods. The resulting fault identification and diagnostic 
information also can facilitate the creation of efficient and 
effective maintenance schedules based on accurate 
classification of the nature and status of incipient faults 
associated with a particular motor drive. Hence, this 
technique has significant potential in applications to key 
induction motor ASDs such as in important process industries 
and similar applications where extended maintenance down 
times cannot be tolerated. 

VII. CONCLUSIONS 

In conclusion, this paper presents the integration of the 
TSCFE-SS method, which can generate a large number of 
faulty and healthy IMASD simulations, with the TSDM 
technique, which can automatically characterize and predict 
IMASD modes of operation.  The method was shown to 
enable one to differentiate between types of faults such as 
dynamic and static eccentricities and distinguish them from 
squirrel-cage breakages. The method also distinguishes 
between the degrees of fault severities such as percentage 
eccentricities and number of bar as well as connector 
breakages. Once again, it should be reemphasized that the 
fault classification achieved by this methodology are robust, 
in the sense that for most of these fault classifications the 
next nearest class (other than the fault�s calls) has absolute 
difference of radii of gyration that is one to two orders of 
magnitude greater than the correct (fault) class. Hence, this 
dual track approach can be used to head off the costly and 
catastrophic cascading of IMASD faults that lead to plant 
shutdowns and can facilitate the creation of efficient and 
effective maintenance schedules. 
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