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Abstract 

The 2008 Computers in Cardiology Challenge is to 

automatically identify and measure T-wave alternans. 

The study presented here applies an electrophysiological 

cardiac model to the problem of characterizing the T-

wave variability. Thus, the hypothesis is that the existence 

and magnitude of T-wave alternans can be identified and 

measured using a cardiac inverse problem approach, 

where the magnitude of the alternans are measured in the 

model space. The dataset used in this study is a collection 

of records from selected databases in the Physionet 

databank. Additionally, a simulated ECG dataset is used 

to study the sensitivity and specificity of the proposed 

approach under various noise conditions. Results on the 

simulated ECG data set show that the approach is able to 

differentiate between 5, 10, 20, and 100 microvolt T-wave 

alternans in the presence of various noises between -25 

and 5dB SNR. The score from the challenge, which is the 

Kendall rank correlation coefficient, is 0.331. 

 

1. Introduction 

The 2008 Physionet/Computers in Cardiology (CinC) 

challenge [1] is to automatically detect and quantify T-

wave alternans (TWA), which is crucial in predicting 

sudden cardiac death. T-wave alternans are defined as the 

appearance of periodic beat to beat changes in the T-

wave measurements. Although this phenomenon was 

detected by HE Hering over a hundred years ago, its 

existence is still not fully explained. However, studies in 

the past 25 years have shown a correlation between T-

wave alternans, the heart rate on which they appear, and 

the risk of sudden cardiac death.  

 Many automatic techniques have been presented for 

the quantification of T-wave alternans. Most of these 

techniques are based on measurements in the frequency 

domain [2-4]. Generally, these techniques require 

parameter tuning in order to be effective. On the other 

hand, in 2004, Martinez et al. [2] provided a unified 

framework for the detection of T-wave alternans based on 

many previous methods, which provides a comparison 

between several published TWA approaches. The 

approaches discussed in [2] include spectral, complex 

demodulation, Karhunen-Loève transform, Capon 

filtering, Poincaré mapping, periodicity transform, 

statistical test, modified moving average, and Laplacian 

likelihood ratio methods. 

The approach presented here models the generation of 

the ECG signal with an inverse problem solution and uses 

this solution to quantify the T-wave alternan. The 

modeling approach is based on cardiac electrophysiology, 

where the ECG signal is generated from models of the 

SA node, AV node, Bundle branches, Purkinje fibers, and 

left and right ventricular walls. The electrical activity of 

each of these components of the heart is estimated by the 

difference of two sigmoid functions. The model has the 

ability to characterize the P wave, PR segment changes, 

QRS complex, ST segment changes, and T-wave. 

2. Data sets 

We use two datasets, the CinC Challenge dataset and a 

simulated dataset, to evaluate the hypothesis that model 

based approach can identify and measure T-wave 

alternans. The CinC Challenge dataset consists of 100 

records of various lengths selected from the following 

Physionet Databank databases: Long-Term ST Database, 

PTB Diagnostic ECG Database, MIT-BIH ST Change 

Database, Sudden Cardiac Death Holter Database, and 

the BIDMC Congestive Heart Failure Database. 

The simulated dataset is generated using the Clifford 

and McSharry et al. [5] model, where the T-wave 

magnitude is varied by 5, 10, 20, and 100 microvolt with 

SNR levels of 5, 0, -5, -10, -20, and -25 db of white, pink, 

and brown noise. First, the clean T-wave is determined 

from the model. Second, different noise levels are added 

to the clean T-wave to generate 40 simulations for each 

of the noise level. For each of the 40 simulations the T-

wave magnitude is varied by 5, 10, 20, and 100 

microvolt. The process is repeated for white, pink, and 

brown noise. 

3. Methods 

Our TWA measurement method is based on an electric 

potential heart model during the cardiac cycle. While 

substantial research has been done on the internal 
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dynamics of the cardiac cell, our model focuses, for 

complexity and computational reasons, on characterizing 

key cardiac regions: the SA node, the AV node, bundle 

branches (bb), Purkinje fibers (Pf), and left and right 

ventricles (LV and RV). Individual models are used to 

represent the electrical activation and conduction of each 

region. The interaction between regions is also modeled, 

as well as the net behavior of the whole cardiac model at 

the body surface. 

Each region is modeled as a signal generator. The 

generated waves propagate from each of the regions to 

leads present at the body’s surface. The signals captured 

at the leads represent the ECG, which is generated by the 

potential difference between the waves arriving at the 

positive and negative electrodes of a lead. Figure 1 

illustrates the output of an example cardiac region, which 

is modeled by the difference of two sigmoids. By 

summing the potential difference of the waves generated 

by each cardiac region arriving at the positive and 

negative terminals of a lead, the ECG signals are 

generated. 
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Figure 1: Proposed cardiac region activity 

While other mathematical structures, such as 

polynomials may be used, there is a distinct advantage to 

the difference of two sigmoids. Only five parameters are 

needed to model each cardiac region and these 

parameters correspond well to physiological 

characteristics of the heart and also to fiduciary points on 

the ECG. These parameters are the magnitude (k), 

inflection points (c1, c2), and slopes (a1, a2) of the 

difference of two sigmoids. They correspond, 

respectively, to the magnitude of electrical activity, the 

inflection points of depolarization and repolarization, and 

the rate of potential change within the cardiac region. 

3.1. Mathematical description 

As discussed above our cardiac model is composed of 

models of six key electrical components of the heart. 

Each component is modeled as the difference of two 

sigmoids.  
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where t is time, k represent the magnitude of the electrical 

activity, a1 and a2 determine the slopes, and c1 and c2 

determine the translation in the direction of the x-axis.  

By accounting for the time delays of the depolarization 

and repolarization signals at the positive and negative 

electrodes of a lead, the model of the signal at the 

positive and negative electrodes can be represented by  
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where dδ + , dδ − , rδ + , and rδ −  represent the delay of the 

depolarization at the positive and negative electrodes and 

the delay of the repolarization at the positive and negative 

electrodes, respectively. 

The ECG signal are computed by summing the 

potential difference of the signals generated by the major 

six cardiac regions arriving at the positive and negative 

electrodes of a lead as shown in (4). 
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In order to apply the proposed ECG model, the 

parameters of (2) and (3) are determined by minimizing 

the sum squared error between an ECG signal and the 

model generated signal. However, in this study the aim is 

to determine the parameters for the T-wave.  Thus, the 

error is minimized using the partially separable nonlinear 

least squares method presented in [6], where the 

ventricular activity is divided into the QRS waves, the ST 

segment, and the T-wave; which are represented in this 

case by the bundle branches, Purkinje fibers and left and 

right ventricles. Thus, the T-wave is fit by the 

repolarization phase of the left and right ventricles as 

shown in (5). 
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Thus, the estimated T-wave signal is the sum of the 

ventricular repolarization activity, and the model is 

represented by the parameters corresponding to the left 

and right ventricular repolarization. 

3.2. Preprocessing and initial condition 

We apply our approach sequentially to each T-wave, 

which requires the use of ECGPUWAVE [1] to identify 

the T-wave beginning and end. The T-wave amplitude is 

normalized such that the initial sample is zero, and the 

signal is zero padded for 30 ms. 
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We analyze only T-waves in a record that are 

considered to have common or good morphology in order 

to avoid signal artifacts. This is done by computing a 

time average of all T-waves in a record. T-waves whose 

cross-correlation with the time average greater than 0.7 

are kept for further analysis. 

Initial model conditions, prior to error minimization, 

are determined using a template signal with known 

parameters. The point of the highest cross-correlation 

between the template signal and the first good T-wave 

determine the initial model conditions. Subsequent initial 

conditions are determined using the prior T-wave’s 

estimated model parameters. This results in accurate and 

rapid estimation of the model parameters for consecutive 

T-waves. 

3.3. Parameter estimation 

Least squares minimization of (5) using lsqcurvefit [7] 

yields the model parameters. A set of constraints applied 

to the parameter estimation process improve optimization 

convergence and avoid unrealistic models. In this work, 

we set the activation phase of the LV and RV zero 

because they do not contribute to the T-wave generation. 

Right ventricular repolarization is constrained to start 

before left ventricular repolarization. Additionally, the 

slopes and magnitudes of  (1) during the depolarization 

phase are constrained to be greater than zero [8].  

3.4. TWA measurement 

Our approach estimates model parameters for each T-

wave with good morphology in a record. The distance 

between consecutive T-wave models is calculated in the 

parameter space. 

 
1i i iTWA m m+= − , (6) 

where mi is the vector of model parameters for the ith T-

wave. The TWA magnitude of a record is the standard 

deviation of the sequence of 1 2, ,..., nTWA TWA TWA .  

4. Results 

The proposed TWA measurement method is applied to 

the 2008 Physionet/Computers in Cardiology challenge 

dataset. Additionally, the method is applied to simulated 

signals with added white, brown and pink noises. The 

simulated signals provide a quantitative measure of the 

method’s accuracy.  

4.1. Physionet/CinC challenge database 

The modelling approach is applied to the challenge’s 

dataset. Figures 2 and 3 show original T-waves, the 

results from their corresponding models, and their 

respective error. The error is less than 5% between the 

original signals and the results of the models. After 

generating all parameter vectors for a record, the TWA 

magnitude is measured using the method described 

earlier. 
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Figure 2: The top figure shows the original and estimated 

T-waves for the first T-wave in a record. The bottom 

figure shows the error between the two signals. 
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Figure 3: The top figure shows the original and estimated 

T-waves for the second T-wave in a record. The bottom 

figure shows the error between the two signals. 

The Kendall rank correlation coefficient for the 

proposed method is 0.331. The challenge’s score is 

determined by sorting the TWA magnitude of each entry. 

Then, the median of all the rankings is determined and is 

used as the reference signal. Finally, the score is 

determined as the Kendal rank correlation coefficient 

between the sorted magnitudes and the reference ranking.  

4.2. Simulated signals 

The simulated signals are generated from the model 

developed in [9]. The T-wave magnitude is varied by 5 to 

100 µV. Additionally, white, brown, and pink noise are 

added to the signal at an SNR level ranging from -25 to 5 

dB measured at the ST segment [10]. The process is 

repeated for 40 trials, and the average error of the T-wave 
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variation is measured. Figure 4 shows the noisy signal 

under 5 µV with -25dB additive noise. The error between 

the original signal and the estimated signal is less than 

1%. 
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Figure 4: The top, middle, and bottom figures are, 

respectively, the noisy signal, the original and estimated 

signals, and error between the two signals. 

Table 1 presents the percentage error between original 

and estimated TWA magnitudes. The reference TWA is 

the variation of the distance between consecutive 

modeled parameters of the clean signal with different 

alternans. After the model parameters are estimated for 

the noisy signals, the TWAs are calculated. The error 

between the clean and the noisy TWAs is calculated. The 

average error is less than 1%. 

 

Noise Type TWA error ± 1std 

White noise 0.44% ± 0.57% 

Pink Noise 0.60% ± 0.49% 

Brown Noise 0.20% ± 0.40% 

Table 1: Error of TWA magnitude with added noise and 

known T-wave magnitude variations 

5. Discussion and conclusion 

We present a model based approach for the 

measurement of T-wave alternans. The model is based on 

the electrophysiological activity of the ventricles and 

solves the inverse problem for the ventricular 

repolarization. The approach measures the TWA in the 

inverse solution space. The results showed high accuracy 

in measuring TWAs for simulated signals. 

The proposed method is a new way of analyzing 

TWAs and can be enhanced by accurately identifying the 

T-waves. The main issue this approach faces is that of the 

beat detection, baseline wandering, and the lack of 

alignment of the detected T-waves. These effects can 

alter the measurement of the TWA. 

The cardiac electrophysiological model presented in 

this paper for the measurement of the T-wave alternan 

shows high accuracy for detecting the T-wave variations 

in simulated signals, under various noise conditions and 

T-wave magnitude variations. The advantage this 

approach has, in addition to the minimal error compared 

to the original T-wave signal, is the ability to maintain 

clinical information such as the beginning and end of the 

T-wave, which can be relevant in clinical diagnostics. 
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