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Abstract 

The monitoring of respiration rates using impedance 

plethysmography is often confused by cardiac activity. 

This paper proposes using the phonocardiogram as an 

alternative, since the process of respiration affects heart 

sounds. As part of this research, a technique is developed 

to segment heart sounds into its component segments, 

using Hidden Markov Models. The heart sounds data is 

preprocessed into feature vectors, where the feature 

vectors are comprised of the average Shannon energy of 

the heart sound signal, the delta Shannon energy, and the 

delta-delta Shannon energy. The performance of the 

segmentation system is validated using eight-fold cross-

validation. 

1. Introduction 

Respiration is an important physiological signal often 

monitored in clinical settings. An inexpensive, non-

invasive method of measuring respiration is impedance 

plethysmography. In impedance plethysmography, 

respiration is measured by detecting the variation in 

impedance between the ECG electrodes on each side of 

the chest [1]. A small, high frequency current is applied 

across these electrodes, and the patient monitoring device 

measures the change in voltage as the impedance changes 

between the leads. However, impedance plethysmography 

can accidentally detect cardiac activity as the impedance 

changes. This is of particular concern when the patient 

stops breathing, because the patient monitoring 

equipment can detect these cardiac artifacts as respiration. 

This can cause periods of apnea to go undetected. Also, 

obstructive apnea may go undetected because the chest 

wall continues to move as the patient struggles to breath. 

This is undesirable.  

Heart sounds are affected by respiration; therefore, it is 

feasible that a patient monitor could record these sounds 

and use them to determine respiration rates. Previous 

research at GE Healthcare [2] proved the feasibility of 

this concept using an autocorrelation technique. This 

technique determined respiration at lower rates (7.5, 10, 

15 Breaths per Minute (BrPM)), but failed at higher rates 

(30 BrPM). The purpose of this study is to develop an 

algorithm to determine the rate of respiration from the 

heart sound signal. Such a system could not be confused 

by the electrical impulses from cardiac activity, and it 

would be better suited for detecting an apnea condition 

than the traditional impedance method.  

Figure 1. Example Phonocardiogram 

The first phase in this project is to develop a robust 

technique for segmenting heart sounds 

(phonocardiogram) into its component segments: the S1 

sound, the systole period, the S2 sound, and the diastole 

period. Fig. 1 provides an example of a phonocardiogram. 

The heart generates the first heart sound (S1) when 

tricuspid and mitral heart valves snap shut, and the heart 

generates the second heart sound (S2) when the 

pulmonary and aortic values snap shut.  

As a person inhales, the lungs expand and apply 

pressure against the heart. The left lung puts greater 

pressure against the heart than the right lung because the 

heart sits on the left side of the chest. This pressure 

differential causes the valves on the left side of the heart 

to snap shut after the valves on the right side, which 

causes a split in the S2 sound. 

Since the S2 sound splits during inhalation [3], 

segmenting the heart sounds into its components is 

important for detecting the heart sound split. The rate of 

the split of the S2 heart sound can be converted directly to 
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a respiration rate. In addition, respiration causes a change 

in the beat-to-beat interval, called respiratory sinus 

arrhythmia. As the patient breaths, the beat-to-beat 

interval cycles up and down at the same frequency as 

respiration [4]. 

Previously attempts at an algorithm for segmentation 

resulted in a 93% success rate [5]; however, 

implementing this algorithm is prone to error, and it is 

sensitive to changes in pre-processing and setup 

parameters. The purpose of this study is to develop a 

robust segmentation algorithm for segmenting heart 

sounds into its components using Hidden Markov 

Models.  

2. Methods 

2.1. Data acquisition 

The physiological data was collected at GE Healthcare 

from nine different subjects, using CardioLab system 

and a Dash family patient monitor. The CardioLab 

system sampled data from ECG leads I, II and III, and an 

electronic stethoscope signal at 977 samples per second. 

Each subject breathed according to a fixed protocol, with 

the assistance of a metronome. 

2.2. Pre-processing 

The original heart sound data was unlabeled. Using the 

PhysioNet toolkit [6], the heart sound data and ECG data 

were converted to the MIT file format, interpolated to a 

1k sampling rate, and annotated with QRS and heart 

sound annotations. The heart sound annotations were 

manually adjusted for accuracy. 

 We divided the data files into a “clean” set and a 

“dirty” set. The “clean” data files have a high SNR and 

little or no visible noise, while the “dirty” data files have 

a low SNR and/or highly visible noise. This study 

concentrated on the “clean” data files (46 files, ~2286 

seconds total). 

The system filters the original heart sound signal using 

a band-pass filter with cutoff frequencies at 30 Hz and 

200 Hz. Next, the signal is normalized according to the 

equation (1). 

xnorm (k) =
x(k)

max
i

x(i)( )
   (1) 

Then, it calculates the average Shannon energy in 

continuous 0.04-second segments, with 0.02 seconds of 

overlap per segment. As explained in [2], the Shannon 

energy emphasizes the medium intensity signals and 

attenuates the high intensity signals. This tends to make 

medium and high intensity signals similar in amplitude. 

The system calculates the average Shannon energy of 

each frame, using equation (2), where xnorm is the 

normalized heart sound signal. 

 Es = −1 / N x
2

norm (i)* log x
2

norm (i)
i=1

N∑  (2) 

 Then, the system normalizes the average Shannon 

energy over all of the frames, using equation (3), 

where ( )
s

E t  is the average Shannon energy for frame t, 

( ( ))
s

E tξ is the mean value of ( )
s

E t  and ( ( ))
s

E tσ  is the 

standard deviation of ( )
s

E t . 
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The normalized average Shannon energy ( Pa (t) ) is the 

primary feature used in this study. 

2.3. Mel-spaced filterbanks 

Next, the system extracts the spectral characteristics 

from the heart sound signal. Since the average duration of 

the S1 sound is 0.16 seconds (empirical), the system 

divides the signal into 0.15-second frames, with 0.02 

seconds of overlap for each frame.  

According to [7], the frequency spectrum of S1 

contains peaks in the 10 to 50 Hz range and the 50 to 140 

Hz range, while the frequency spectrum of S2 contains 

peaks in the 10 to 80 Hz range, the 80 to 200 Hz range, 

and the 220 to 400 Hz range. As a result, this study limits 

the spectral feature extraction between the frequencies of 

10 Hz and 430 Hz.  

Mel-Spaced filter banks provide a simple method for 

extracting spectral characteristics from an acoustic signal. 

This method involves creating a set of triangular filter 

banks across the spectrum. The filterbanks are equally 

spaced along the mel-scale, as defined in equation (4). 

 Mel( f ) = 2595 log10 (1+
f

700
)  (4) 

Equal spacing on the mel-scale provides non-linear 

spacing on the normal frequency axis. This non-linear 

spacing means that there are numerous, small banks at the 

lower frequencies and sparse, large banks at the higher 

frequencies [7]. Since most of the energy of the heart 

sounds is in the lower frequency ranges, using a mel-scale 

matches the frequency spectrum of the heart sounds. 

Each triangular filter is multiplied by the discrete 

Fourier transfer of the heart sound frame and summed. 

This creates a set of frequency bins, where each bin 

represents a portion of the frequency spectrum.  

2.4. Regression coefficients 

The final feature extraction step is to calculate a set of 

regression coefficients. Regression coefficients are used 

to represent the changes in each feature over time. The 

system computes the first order regression (delta 
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coefficients) and the second order coefficients (delta-delta 

coefficients) using the following regression formula [7]. 

 dt =

θ(ct+θ − ct−θ )
θ=1

Θ∑
2 θ 2

θ=1

Θ∑
 (4) 

The system combines the Shannon energy, the spectral 

features, and the regression coefficients into a single 

feature vector per frame. It stores these feature vectors for 

later use in the training and testing of the heart sound 

Hidden Markov Models. 

2.5. Heart sound Hidden Markov Model 

An Hidden Markov Model (HMM) is a probabilistic 

state machine where the states of the machine are 

unobservable, but the outputs of the state machine are 

observable. A HMM can model signals where the outputs 

are discrete or continuous. An example of a discrete 

HMM is a HMM that models the series of heart sound 

labels over time. An example of a continuous HMM is a 

HMM that models the Shannon energy feature over time. 

 

Figure 2. Heart Sound Markov Model 

One can model the phonocardiogram signal as a four 

state HMM. The first state corresponds to the S1 sound, 

the second state corresponds to the silence during the 

systolic period, the third state corresponds to the S2 

sound, and the fourth state corresponds to the silence 

during the diastolic period (see Figure 1). This model 

ignores the possibility of the S3 and S4 heart sounds, 

because these heart sounds are not germane to the task of 

recognizing respiration rates from heart sound data. 

Additionally, these sounds are difficult to hear and 

record; therefore, they are most likely not noticeable in 

our heart sound data. 

This four state HMM is useful for modeling the 

sequence of symbols (or labels) of the phonocardiogram; 

however, it is too simple to accurately model the 

transitions between sound and silence. One solution is to 

embed another HMM inside of each of the heart sound 

symbol states. The embedded HMM models the signal as 

it traverses a specific labeled region of the signal. Using 

this combined approach, we can model both the high-

level state sequence of our signal (S1-sil-S2-sil) and the 

continuous transitions of the signal. This type of model is 

similar to how a speech processing system has a high-

level probabilistic grammar to model the transition of 

words or phonemes, and an embedded HMM for each 

phoneme [8]. 

All of the experiments utilized an eight state HMM for 

the S1 sounds, a six state HMM for the S2 sound, and a 

three state HMM for each silence period. The number of 

states where calculated by taking the average duration of 

each heart sound, and dividing by the frame duration. For 

example, the S1 sound has an average duration of 160 

milliseconds and the frame step size is 20 milliseconds; 

therefore, it can be represented by eight states (160 ms / 

20 ms = 8).  

In addition, the experiments utilized a four state 

grammar that represented the state model given in Figure 

1. The probabilities for this model were learned using a 

discrete HMM where the label files were used to train the 

model. The resultant HMM represents the symbol 

transitions of the phonocardiogram. We manually 

translated the discrete HMM into a grammar for use with 

the HTK toolset [8]. 

2.6. Validation 

Two different methods for measuring the performance 

of the system are employed: frame error rate and model 

error rate. To determine the frame error rate, we compare 

each frame of the labeled signal to the output signal. We 

calculate the error rate of the system by dividing the 

number of mismatched frames by the total number of 

frames in the system. 

To determine the model error rate, we calculate the 

center of the heart sound label and the center of the 

learned heart sound, and calculating the difference 

between these centers. The system marks a labeling as a 

success if the delta between these centers is less than 50 

milliseconds. Then, the error rate is the number of 

mismatched S1 or S2 labels divided by the total number 

of sound labels in the system. 

We measure both the frame error rate and the model 

error rate, for both the training of the system and the 

validation of the system. Since there were only clean files 

for eight of the patients, eight-fold cross-validation was 

used. Finally, the noisy files were validated against the 

model where the model was trained with only clean files. 

3. Results 

To determine the best features to use for this study, 

experiments were run using various combinations of 

energy, Shannon energy, Mel-spaced filterbanks and Mel-

frequency Cepstral coefficients.  The lowest training error 

rate came from systems where we only used the Shannon 
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energy (SE), the delta Shannon energy (D), and the 

acceleration of the Shannon energy (A). Table 1 clearly 

shows that this feature vector has the lowest frame error 

rate over the training set. 

Table 1. Error Rates for Various Features 

Feature Types Frame error rate Model error rate 

SE 0.093 ± 0.047 0.032 ± 0.045 

SE_D 0.091 ± 0.049 0.026 ± 0.050 

SE_D_A 0.089 ± 0.035 0.021 ± 0.035 

MELSPEC_SE_D_A 0.098 ± 0.034 0.019 ± 0.026 

  

We performed an eight-fold cross validation using an SE-

Delta-Acceleration feature vector with and without the 

Mel-spaced filterbanks. Also, we tested the clean model 

using the noisy phonocardiogram files. Table 2 and Table 

3 provide the cross validation results and the noisy file 

results, respectively.  

Table 2. Cross-Validation Results, Clean Files 

Feature Types Frame error rate Model error rate 

SE_D_A 0.093 ± 0.035 0.024 ± 0.035 

MELSPEC_SE_D_A 0.10 ± 0.042 0.026 ± 0.035 

Table 3. Test Results, Noisy Files 

Feature Types Frame error rate Model error rate 

SE_D_A 0.23 ± 0.17 0.19 ± 0.25 

MELSPEC_SE_D_A 0.22 ± 0.15 0.16 ± 0.19 

4. Discussion 

Shannon Energy features with and without the Mel-

spaced filterbank features are nearly identical in 

performance. Shannon Energy features are better suited 

for lowering the frame error rate while Mel-spaced 

filterbanks are better suited for lowering the model error 

rate. Mel-spaced filterbanks are marginally better as 

features for noisy phonocardiograms than clean 

phonocardiograms. The selection of the feature set 

becomes a tradeoff between processing speed and noise 

immunity. 

The noisy file set has an increased error rate for both 

frame error rates and model error rates. Since the heart 

sound spectrums and the typical ambient noise spectrums 

are in similar frequency ranges, this is expected. Further 

work will include using a subtraction technique to remove 

ambient noise from the heart sound signal. This could be 

in the form of a second electronic stethoscope that is 

placed on the body away from the thorax. Subtract the 

secondary stethoscope’s signal from the primary 

stethoscope’s signal to remove the additive noise in the 

system. 

 

 

 

5. Conclusions 

The goal of this study was to develop a robust 

segmentation algorithm for segmenting heart sounds into 

its components, using Hidden Markov Models. We have 

accomplished this goal by achieving a 9% frame error 

rate rate, and a 2% model error rate rate, during an eight-

fold cross validation. The model accuracy of 98% from 

the Hidden Markov Model approach is an improvement 

over the 93% correctness in the automatic identification 

of S1 and S2 from [5]. Using this segmentation technique, 

we can extract additional features that are useful for 

extracting the respiration rate from the phonocardiogram, 

such as detecting the splits in the S2 sound or the beat-to-

beat interval. 
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