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Abstract 

This paper studies the ECG signal prior to a transient 

ST change. Two hypotheses are proposed. The first is that 

various types of ST changes can be differentiated using 

the signal just prior to the ST event. The second is that 

ischemic ST changes can be differentiated from non-

events, again using the signal prior to the ST event. A 

machine learning approach, based on Gaussian Mixture 

Models and maximum likelihood Bayesian classification, 

is used to analyze the ECG signal. Two sets of feature 

extraction techniques, reconstructed phase space and 

Karhunen Lòeve transform, are applied, both of which 

capture morphological characteristics of the ECG signal. 

The results in addressing the first hypothesis show that 

information indicative of the type of ST change is present 

in the signal prior to the onset of the ST event; however 

the classification accuracy is low. The second hypothesis 

cannot be affirmed with the results presented here. 

 

1. Introduction 

This paper is an entry in the 2005 Computers in 

Cardiology challenge, which is to revisit the datasets from 

the previous five challenges with the goal of presenting 

new discoveries using these previous datasets. This study 

extends the 2003 challenge by studying characteristics of 

the ECG signal before the onset of transient ST changes. 

Two hypotheses are proposed. The first is that different 

types of ST changes (ischemic, heart rate, conduction 

change, and axis shift) can be differentiated using the 

ECG signal before the ST event. The second hypothesis is 

that ischemic ST episodes can be differentiated from non-

ST events, again using the ECG signal before the ST 

event or non-event. 

To address the first hypothesis, we classify the ST 

events as labeled in the Long Term ST (LTST) database, 

using the 30s of ECG signal just prior to the start of an 

event. To address the second hypothesis, a randomly 

generated second set of non-events is created. We classify 

non-events and ischemic events. 

To test these hypotheses, we study two methods for 

characterizing the ST segment and T-wave shape. The 

first is a dynamical systems approach based on 

reconstructed phase spaces (RPSs) [1], and the second is 

based on the Karhunen Lòeve Transform (KLT) of the ST 

segment, which is provided with the LTST dataset. A 

Bayesian classifier over a Gaussian Mixture Model 

(GMM) of these features is the machine learner for 

creating an automatic classifier of the events. 

Beyond our intrinsic interest in solving difficult 

classification/prediction problems, the question of clinical 

relevance must be addressed for such a study. The clinical 

relevance begins with an acknowledgement of the 

prevalence, cost of detection, and complications due to 

undetected myocardial ischemia. Myocardial ischemia is 

the most common heart disease and is caused by a 

blockage in the cardiac arteries [2], which deprives the 

cardiac tissue of necessary oxygen, and, if not reversed, 

leads to a myocardial infraction. Common methods for 

detection, such as coronary angiography are costly and 

invasive. 

Thus, an effective, low-cost, automatic screen based on 

the analysis of ECG Holter recordings would be of 

clinical relevance. This argument justifies the study of ST 

episodes, which can be caused by the “injury current” due 

to the differences in conduction between ischemic and 

healthy cardiac tissue. But why study the ECG signal 

before the identified ST episode? We see three answers to 

this question. First, a greater understanding of the signal 

before the onset of the ischemia may provide insight into 

the signal after the onset. Second, understanding the 

signal before the onset will help in differentiating non-

ischemic ECG signals from ischemic ECG signals. Third, 

if effective automatic methods could be developed for 

predicting the onset of ischemia, this would enable 

preventative and timely automatic therapies to be 

provided, such as might be delivered by a drug pump. 

Examples of work in studying changes in the ST level 

include Langley et al. [3], which uses threshold levels and 

time durations to classify ischemic events; Diamantras et 

al. [4], which uses a neural network to extract nonlinear 

principle components of the ST segment and a 

Mahalanobis distance based classifier; Silipo et al.[5], 

which compares traditional ECG classification methods 

with artificial neural network based approaches; and 

Zimmerman et al. [6, 7], which uses RPSs, GMMs, and 

support vector machines to distinguish ischemic and non-

ischemic ST changes. 

The rest of the paper is organized as follows: A 
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discussion of the LTST dataset is presented. Next, an 

overview of the methods is provided. The following 

section presents the results. The paper concludes with a 

summary and discussion of the results. 

2. Long-term ST database 

This study uses the LTST database, which consists of 

86 long term (21 to 24 hour) Holter ECG recordings. The 

free portion of the dataset consists of 43 records from 42 

patients (1772 events using the B protocol) and is used as 

the training set for this study. The fee portion of the 

dataset consists of 43 recordings from 38 patients (1974 

events using the B protocol) and is used as the test set for 

this study [8, 9]. A second partitioning of the dataset is 

formed for the purposes of ten-fold cross validation. The 

partitions are formed so that no patient is in more than 

one fold, i.e. the results are patient independent. The first 

five folds are formed from the training set with records 

assigned to folds in sequential order according to the 

record numbers. The first three folds contain nine records 

each and the next two folds contain eight records each. 

The last five folds are formed from the test set using the 

same procedure. 

The J-point annotations provided in the dataset are 

used, as are the ischemic, axis shift, conduction change, 

and heart rate related ST change labels. The five KLT 

coefficients of the ST segments provided with the dataset 

also are used. 

An additional set of non-events is generated randomly 

according to a uniform probability distribution across 

records that had ischemic events and in equal number to 

the number of ischemic events in that record, subject to 

the provision that a non-event is not within five minutes 

of the beginning of the record or within five minutes of 

the beginning or end of any labeled event or episode. 

3. Methods 

We present two methods for characterizing the ECG 

signal before the ST event. The two methods share a 

common machine learning approach, which is a GMM to 

statistically characterize an underlying distribution of 

features and a Bayesian maximum likelihood classifier. 

The difference between the two approaches is found in 

their features sets. The first approach constructs RPSs of 

the ST segment and T-wave and then uses the GMM to 

model the structure of the resultant spaces. The second 

approach uses the KLT of the ST segments to generate a 

five dimensional representation of the ST segment. A 

GMM is then learned over the resulting space. 

A common element between the two approaches is 

GMMs, which take the form of 
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where 
n

x  is the n
th

 feature vector, X is the set of all 

feature vectors, and 
i

c  is the i
th

 class. 

The essence of the GMM/RPS approach is to 

transform extracted ST segments and T-waves into RPSs 

and learn GMMs over the resultant RPSs. Multiple sets of 

GMMs are learned – one set for each ST event class. The 

set associated with a given class corresponds to models 

associated with the J-points found in the 30s of ECG 

signal before the event. 

Given a time series 
n

x x= , 1,...,n N= , a sequence of 

state variable observations, a point in a RPS is 

 ( 1) ...n n d n nx x xτ τ− − −
 =  x , 

where ( )1 ( 1) ,..., ,n d Nτ= + −  d is the dimension of the 

RPS, and τ is the time lag. When constructed with a large 

enough dimension, the resulting structure has a one-to-

one correspondence with the state structure of the 

underlying generating system [10]. 

To model the changes in ST segments and T-waves, all 

J-points 30s before the signal are identified and the 

corresponding signals transformed into RPSs. Each J-

point is indexed, and a signal 400ms long starting at the J-

point is extracted. The RPSs associated with a particular 

index and ST event class are combined to form a large 

RPS associated with each index. A 16 mixture GMM is 

then learned for each combined RPS. The dimension and 

lag for the RPS are determined using heuristic methods 

based on the false nearest neighbors and the first 

minimum of the automutual information. See [1] for more 

details on this process. 

Test ECG signals go through the same process to 

extract the ST segments and T-waves associated with 

each J-point 30s before the event. The extracted signals 

are then transformed into RPSs. The likelihood of each 

RPS for each class is computed using the GMM. The 

likelihoods associated with each J-point are combined to 

yield a cumulative likelihood that is used in the Bayes 

maximum likelihood classifier to yield a classification. 

The GMM/KLT approach is similar in structure to the 

GMM/RPS approach. The KLT coefficients for the ST 

segments for the ECG 30s before the event are extracted 

and 16 mixture GMMs are learned over these extracted 
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KLTs. Multiple sets of GMMs are learned – one set for 

each ST event class. The set associated with a given class 

corresponds to models associated with the KLTs found in 

the 30s of ECG signal before the event. The details of the 

KLT formation are found in [9, 11]. 

Test ECG signals go through the same process to 

extract the KLTs associated with the ST segments 30s 

before the event. The likelihoods of all KLTs for each 

class are computed using the GMMs. The likelihoods 

associated with each KTL extracted from the 30s ECG 

are combined to yield a cumulative likelihood which is 

used in the Bayes maximum likelihood classifier. 

4. Results 

This section presents results from applying the 

RPS/GMM and KLT/GMM approaches discussed above 

to classifying ischemic, rate related, axis shift, and 

conduction change events using the ECG signals 30s 

before the event, as well as the results from applying the 

RPS/GMM and KLT/GMM approaches to differentiating 

ischemic and non-events.  

4.1. Distinguishing events 

The results from distinguishing different ST change 

events are given in Tables 1-4. Table 1 provides the 

confusion matrix for the test set results of the RPS/GMM 

approach. 

 

Table 1. Test set confusion matrix for classifying 

ischemic (is), rate related (rt), axis shift (as), and 

conduction change (cc) using the RPS/GMM approach. 

 is rt as cc 

Is 309 2 379 33 

Rt 26 1 63 2 

As 207 7 470 21 

Cc 0 3 450 1 

 

The expertly labeled classification is given by the 

labels in the first column of Table 1. The algorithm 

determined classification is given by the labels in the first 

row of Table 1.  This scheme is used for all confusion 

matrices in this paper, as are the labels is, rt, as, cc, which 

correspond to ischemic, rate related, axis shift, and 

conduction change, respectively. 

The classification accuracy is 39.6% vs. 25.0% for 

chance. The sensitivity for ischemia is 42.7%. The 

specificity for other events is 81.4%. Applying the 2χ  

test, the above confusion matrix is different from one 

generated by a random classifier (Type I error p < 10
-15

). 

Table 2 shows the confusion matrix for the ten-fold cross 

validation, using the folds described above. 

 

Table 2. 10-fold cross validation confusion matrix for 

ischemic (is), rate related (rt), axis shift (as), and 

conduction change (cc) using the RPS/GMM approach. 

 is rt as cc 

is 166 15 892 53 

rt 33 0 191 8 

as 122 7 1313 51 

cc 163 2 692 38 

 

The classification accuracy is 40.5% vs. 25.0% for 

chance. The sensitivity for ischemia is 14.7%. The 

specificity for other events is 87.9%. Applying the 2χ  

test, the above confusion matrix is different from one 

generated by a random classifier (Type I error p < 10
-15

). 

The accuracies averaged across folds is 43.7% with a 

standard deviation of 25.3%. This differs slightly from 

the combined confusion matrix accuracy as this accuracy 

is calculated on each fold before averaging. This allows 

an estimate of the standard deviation of the accuracy to be 

generated. Based on the t-test, the accuracy of the 

RPS/GMM approach is greater than chance (Type I error 

of p = 0.02). Table 3 presents the confusion matrix for the 

test set results of the KLT/GMM approach. 

 

Table 3. Test set confusion matrix for classifying 

ischemic (is), rate related (rt), axis shift (as), and 

conduction change (cc) using the KLT/GMM approach. 

 is rt as cc 

is 301 10 412 0 

rt 28 10 52 2 

as 310 27 366 2 

cc 6 0 448 0 

 

The classification accuracy is 34.3% vs. 25.0% for 

chance. The sensitivity for ischemia is 41.6%. The 

specificity for other events is 72.5%. Applying the 2χ  

test, the above confusion matrix is different from one 

generated by a random classifier (Type I error p < 10
-15

).  

A ten-fold cross validation also was performed using 

the folds discussed above. Table 4 shows the confusion 

matrix. The classification accuracy is 33.2% vs. 25.0% 

for chance. The sensitivity for ischemia is 42.3%. The 

specificity for other events is 55.6%. Applying the 2χ  

test, the above confusion matrix is different from one 

generated by a random classifier (Type I error p < 10
-15

). 

The accuracies averaged across folds is 39.3% with a 

standard deviation of 18.6%. Based on the t-test, the 

accuracy of the KLT/GMM approach is greater than 

chance (Type I error of p = 0.02). 
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Table 4. 10-fold cross validation confusion matrix for 

ischemic (is), rate related (rt), axis shift (as), and 

conduction change (cc) using the KLT/GMM approach. 

 Is rt as cc 

is 476 72 578 0 

rt 66 59 105 2 

as 678 102 710 3 

cc 420 0 475 0 

 

A comparison of the 10-fold cross validation 

accuracies of the RPS and KLT approaches using the one-

tailed t-test yields that the RPS accuracy is greater than 

the KLT with p = 0.66, which indicates that they are not 

statistically different. 

4.2. Distinguishing non-events from events 

The results for both approaches for distinguishing non-

events from events are not statistically different from 

chance. Using a ten-fold cross validation, the RPS/GMM 

combined accuracy is 50.3% with chance being 50.0%. 

The sensitivity for ischemia is 2.0%. The specificity for 

other events is 98.5%. The 10-fold average accuracy is 

50.7% with a standard deviation of 1.9%. This is greater 

than chance with a Type I error of p = .53, indicating that 

the RPS/GMM method is not statistically different from 

chance on this task. 

Similarly, the ten-fold cross validation combined 

accuracy is 54.0% with chance being 50%. The 

sensitivity for ischemia is 74.6%. The specificity for other 

events is 33.5%. The 10-fold average accuracy is 53.1% 

with a standard deviation of 5.7%. This is greater than 

chance with a Type I error of p = 0.13, indicating that the 

KLT/GMM method is not statistically different from 

chance on this task.  

A comparison of the 10-fold cross validation results 

between the RPS and KLT methods using the one-tailed 

t-test yields that the KLT accuracy is greater than the RPS 

accuracy with p = 0.20, which indicates that they are not 

statistically different. 

5. Discussion and conclusions 

The results found in this study in many cases were 

statistically significant, but not as substantial as hoped 

for. For example, the accuracy for distinguishing between 

ischemic, rate related, axis shift, and conduction change 

ST events is significantly above chance for both the 

RPS/GMM and KLT/GMM approaches, but certainly not 

at a level that would be called effective. On the other 

hand, this result clearly indicates that some information is 

contained in the ECG signal before an ST event that is 

predictive of that ST event. 

The second hypothesis that ischemic ST episodes can 

be differentiated from non-ST events, using the ECG 

signal before the ST event or non-event, cannot be 

supported by the results found in this study. Both 

machine learning methods had accuracies that were not 

significantly different than chance. 
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