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Abstract 

In this paper, a method is proposed to improve an 

algorithm for myocardial ischemia classification created 

by Langley et al.  The Langley classifier achieves a very 

high sensitivity (99.0%), but a lower specificity value 

(93.3%).  In order to improve the specificity, the 

proposed algorithm attempts to reclassify the events that 

the Langley classifier labels ischemic.  The classifier used 

is a support vector machine.  The features used are the 

mean of the ST deviation, maximum value of the ST 

deviation, and the initial ST deviation. 

The classifier is able to increase the specificity from 

92.3% to 93.3%.  The drawback is that the sensitivity is 

reduced from 99.0% to 97.5%.  This causes the overall 

accuracy to decrease slightly from 95.6 to 94.8. 

The algorithm shows promise in being able to increase 

specificity, but work must be done to find features that do 

not cause such a large decrease in the sensitivity. 

 

1. Introduction 

Heart disease is the leading cause of death in the 

United States. The most common type of heart disease is 

myocardial ischemia, which is caused by a blockage in 

the arteries leading to the heart [1]. This type of blockage 

deprives the cardiac tissue of necessary oxygen. Without 

oxygen, the cardiac tissue begins to die leading to a 

myocardial infraction or heart attack.  

In order to prevent myocardial infarction, the signs of 

ischemia must be quickly and accurately detected. 

Detection of ischemia can be accomplished with coronary 

angiography, the most accurate, but also the most 

invasive method used for detection [2]. Exercise testing 

and echocardiograms are other common detection 

schemes. Unfortunately, because these methods are 

expensive and often very invasive, they are generally only 

performed on high-risk patients. 

This means that many patients do not receive testing. If 

a patient who is not deemed high-risk experiences silent 

ischemia (condition that does not induce chest pain) the 

condition will most likely not be detected. If a more 

affordable, easier to administer testing scheme were 

available, more patients might have the opportunity to be 

tested. 

In order to develop a method for detection of ischemia 

that is both accurate and easy, research has focused on the 

use of electrocardiogram (ECG) recordings [3-5]. The 

electrocardiogram is a recording of the electrical fronts 

transversing the tissues of the heart. These electrical 

fronts trigger the mechanical pumping action of the 

cardiac muscles [6].  

 

Figure 1 - ECG beat with important points labeled 

Research has shown that as the cardiac tissue is 

deprived of oxygen, changes occur in the electrical 

signals of the electrocardiogram [7, 8]. This is most 

evident during ventricular repolarization. The damaged 

cardiac tissue does not depolarize as quickly as the 

healthy tissue. This causes some of the depolarizing wave 

to appear during the normally isoelectric ST segment (the 

time between the S wave and the T wave). If the damage 

is severe enough, it may even affect the T wave. By using 

features derived from the modified ST segment and T 

wave it may be possible to determine if a patient is 

experiencing ischemia [7, 8]. 

Using the information regarding ST segments and 

ischemia, attempts have been made at developing 

classification techniques that use ECG signals. One such 

method, developed by Langley et al, uses threshold levels 

and time durations to classify ischemic events [5]. The 

method produced 99.0% sensitivity when classifying the 

‘Test Set’ of the Long-Term ST Database and had a 
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specificity of 92.3%. This algorithm won the 2003 

Computers in Cardiology challenge. 

This paper uses a support vector machine classifier to 

reclassify the events that were labeled as ischemia by the 

Langley method. This classification method will use 

features from the ST segment and T wave. The time at 

which an ST event has occurred will be supplied, so no 

event detection will be necessary. The goal is to improve 

the sensitivity of the Langley method. 

2. Long-term ST database 

The Long-Term ST Database consists of 86, two or 

three lead (signal), 21 to 24 hour, Holter ECG recordings. 

These recordings are portioned into a ‘Training Set’ and a 

‘Test Set’. The publicly available ‘Training Set’ consists 

of 43 records from 42 patients. There are 1292 events to 

be labeled in the ‘Training Set.’ The ‘Test Set’ is not 

publicly available. This set consists of 43 recordings from 

38 patients. There are 1974 events to be labeled in the 

‘Test Set’ [9]. 

Complete annotations have been provided for the 

database. These annotations label the significant ST shifts 

and episodes. The beginning (J-point) of most ST 

segments has been annotated along with R wave 

annotations using a 16 second averaging window. These 

annotations have been generated using only the first 

channel of each patient’s ECG recording. In cases where 

the first lead is too noisy to allow for detection, a second 

detection was made using the WQRS application 

available in the WFDB applications package from 

PhysioNet [10]. The WQRS program was applied to the 

signal on which the challenge specified that the episode 

was seen. 

To aid in the development of an ischemia classification 

algorithm, complete ST level annotations have also been 

provided. These annotations give the ST level, ST 

reference function, and the calculated ST deviation. The 

ST reference is a expertly labeled moving average of the 

important ST shifts. The ST deviation is calculated by 

subtracting the ST level from the ST reference function 

[9]. See Figure 2 for an example of how ST deviation is 

calculated. 

Figure 2 - Example ST deviation calculation 

3. Support vector machine theory 

The support vector machine (SVM) is a method for 

dividing a feature space using an optimized hyperplane. 

The goal is to minimize both error and complexity of the 

classifier. The benefit of this functionality is that SVMs 

are excellent for modeling spaces with relatively small 

amounts of data [11]. 

The simplest implementation of the support vector 

machine uses two classes (+1, -1). The +1 class is 

assigned to a positive diagnosis, for example ischemic 

causes. The -1 is assigned to the negative class, for 

example non-ischemic causes. If the feature space of 

these two classes is linearly separable, a hyperplane can 

be used to divide the data. If, however, the feature space 

is not linearly separable, the space can be projected into a 

higher dimensional metric space, known as the Hilbert 

space through the use of a kernel function. The goal of 

this transformation is to find a dimension where the 

feature space will be linearly separable. The formula for 

the hyperplane that divides the Hilbert space is: 
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where x is a vector of inputs, K(x,xi) is the kernel 

function, αi is the set of Lagrange multipliers or weights, 

b is a bias term, yi is the input classes, and ŷ is the 

classification estimate. This equation estimates the 

hyperplane that generates the largest margin between the 

two classes [12]. 

One common kernel function is the radial basis 

function (RBF). The RBF is defined by: 
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The parameters for equations (1) and (2) are learned from 

the training data set. One advantage of the radial basis 

function is that it is unaffected by shifting of the data. 

This advantage is very important when applying the 

support vector machine to ECG data because the 

waveforms between different patients are often 

significantly shifted [12]. 

4. Langley algorithm 

The Langley classifier uses threshold levels to classify 

ST event s as ischemic or non-ischemic. To be classified 

as ischemic, an ST event must meet certain criteria before 

it is determined to be over. First, the ST deviation 

(difference between deviation and a calculated reference 

function) must be greater than 50µV at the event start. 

The deviation must then increase to above 100µV and 

remain above 100µV for at least 30 seconds. The event is 

determined to end when the deviation drops below 50µV 

for at least 30 seconds [5]. Figure 3 shows a graphical 

representation of how the Langley method functions. 

   
ST Level 

ST Reference 

Function 

ST  

Deviation 

378



 

 

 

50µV 

100µV 

> 30 sec 

> 30 sec  

Figure 3 - Example of how Langley method is computed 

Axis shifts and conduction changes do not create 

dynamics that follow the criteria described above. In fact, 

they are not considered to have a specific end time. For 

these reasons, the axis shift and conduction change events 

are accurately classified as non-ischemic. Heart rate-

related changes, however, do generate ST deviations that 

sometimes meet this criteria. When heart rate related 

shifts are classified as ischemia, they decrease the 

specificity.  

The accuracy results for the Langley et al method are 

shown in Table 1. These results were calculated by 

applying the method to the ‘Test Set’ of the Long-Term 

ST Database. 

Table 1 - Langley method accuracy results for 'Test Set' 

Sensitivity Specificity Accuracy 

99.0% 92.3% 95.6% 

5. Algorithm 

The first step in implementing the proposed algorithm 

is to train the support vector machine classifier. The 

training events are first fed to the Langley classifier. 

Events classified as non-ischemic are discarded during 

the training process. The features to be used in 

classification are then extracted from the events labeled as 

ischemic. 

Based on the researched correlation between ST 

deviation and ischemia, the features used in the proposed 

algorithm are derived from the ST segment of the ECG 

waveform. The features used are: 

• Maximum ST deviation 

• Mean ST deviation 

• Initial ST deviation 

Calculation of the features is very straightforward. The 

max of the ST deviation is the maximum ST deviation 

between the given start time and the calculated end-time. 

Likewise, the mean is calculated using the ST deviation 

during the discovered event time. The initial ST deviation 

is simply the value of the ST deviation at the given event 

start time. 

Once all the features have been extracted, they are 

placed into a vector space. A vector containing the expert 

classifications of the events is also created. These two 

vectors are fed into the support vector machine for 

training. 

The radial basis function (RBF) is used as the kernel of 

the support vector machine. The width of the kernel is 

determined using integer products of the mean of the 

distance from each of the positive points to its nearest 

negative point in the training set (nearest neighbor). This 

heuristic gave a value of approximately 34 for the 

‘Training Set.’ The results sections shows the accuracies 

for each of the integer multipliers of the kernel width. 

Given the features and kernel parameters the support 

vector machine uses the iterative method described in 

section 3 to discover the hyperplane that creates the 

largest margin between the two classes in the higher 

dimensional space created by the kernel. 

The ‘Test Set’ ST event beats are classified by 

comparing their ST features with the hyperplane-divided 

space of the support vector machine. The event is 

classified based on which side of the hyperplane the point 

created by the feature-set falls. 

6. Results 

The accuracy results in Table 2 show that the proposed 

method is able to successfully increase the specificity 

from 92.3% (Langley method) to 94.3% when the kernel 

width is 34. One drawback of this approach is that the 

sensitivity is reduced from 99.0% to 80.5% respectively. 

These values produce an overall accuracy of only 89.3% 

compared with 95.6% percent for the Langley method.  
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Figure 4 - Flowchart of the proposed algorithm 
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Figure 5 - Results for various kernel widths  

The best overall accuracy of 94.8% occurs when the 

kernel width is between 238 and 306. The sensitivity of 

97.5%, at these widths, is slightly lower than the Langley 

method, while the specificity of 93.3% is 1% higher. 

Overall, the method was not able to surpass the overall 

accuracy of the Langley method, which was 95.6%. 

Table 2 - Accuracy results for particular values of the 

kernel width  

Kernel 

Width 

Sensitivity Specificity Accuracy 

34 80.5% 94.3% 89.3% 

68 88.2% 93.5% 91.6% 

102 92.7% 93.4% 93.2% 

136 94.7% 93.4% 93.9% 

170 95.7% 93.4% 94.2% 

204 97.1% 93.4% 94.7% 

238 97.5% 93.3% 94.8% 

272 97.5% 93.3% 94.8% 

306 97.5% 93.3% 94.8% 

340 97.4% 93.2% 94.7% 

7. Discussion 

The results from the proposed algorithm for 

myocardial ischemia classification show that the 

algorithm is not able to improve the method developed by 

Langley et al. The best overall accuracy is still 0.8% 

lower. The algorithm does, however, succeed in 

increasing the specificity by as much as 2%. 

The main problem with this algorithm is that the 

tradeoff that occurs between specificity and sensitivity is 

too great. Increasing the specificity causes the sensitivity 

to drop, decreasing the overall accuracy significantly. 

The overall framework for this algorithm does seem to 

show some promise, as it is able to increase the 

specificity. It appears, however, that in this case, the 

features used might be too closely related to those of the 

Langley classifier. Since the errors made in both 

classifiers are the same, the accuracies are not increased.  

In the future, experimentation should be done to find 

new features which are completely independent of the ST 

deviation values. 
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