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ABSTRACT

DATA CLEANING IN THE ENERGY DOMAIN

Hermine N. Akouemo Kengmo Kenfack, B.S, M.S.

Marquette University, 2015

This dissertation addresses the problem of data cleaning in the energy

domain, especially for natural gas and electric time series. The detection and

imputation of anomalies improves the performance of forecasting models necessary

to lower purchasing and storage costs for utilities and plan for peak energy loads or

distribution shortages.

There are various types of anomalies, each induced by diverse causes and

sources depending on the field of study. The definition of false positives also

depends on the context. The analysis is focused on energy data because of the

availability of data and information to make a theoretical and practical contribution

to the field. A probabilistic approach based on hypothesis testing is developed to

decide if a data point is anomalous based on the level of significance. Furthermore,

the probabilistic approach is combined with statistical regression models to handle

time series data. Domain knowledge of energy data and the survey of causes and

sources of anomalies in energy are incorporated into the data cleaning algorithm to

improve the accuracy of the results.

The data cleaning method is evaluated on simulated data sets in which

anomalies were artificially inserted and on natural gas and electric data sets. In the

simulation study, the performance of the method is evaluated for both detection and

imputation on all identified causes of anomalies in energy data. The testing on

utilities’ data evaluates the percentage of improvement brought to forecasting

accuracy by data cleaning. A cross-validation study of the results is also performed

to demonstrate the performance of the data cleaning algorithm on smaller data sets

and to calculate an interval of confidence for the results.

The data cleaning algorithm is able to successfully identify energy time series

anomalies. The replacement of those anomalies provides improvement to forecasting

models accuracy. The process is automatic, which is important because many data

cleaning processes require human input and become impractical for very large data

sets. The techniques are also applicable to other fields such as econometrics and

finance, but the exogenous factors of the time series data need to be well defined.
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CHAPTER 1

INTRODUCTION TO DATA CLEANING

This dissertation addresses the problem of data cleaning in the energy

domain, specifically the electric and natural gas industries. A detailed discussion of

the problem is presented below. The contributions to be drawn from this research

and an overview of the natural gas and electric industries also are presented in this

chapter. This chapter concludes with an outline of the remainder of the dissertation.

1.1 Data Cleaning Problem Statement

Data cleaning is the process that consists of detecting, diagnosing, and imputing

anomalous data [96]. Specifically, this dissertation focuses on cleaning time series

data from the energy field. This data is used as input to energy demand forecasting

models. Accurate forecasting is important because it helps the energy industry and

their customers save energy and money. During severe weather such as extreme cold

or heat waves, accurate forecasts can save lives by ensuring that the necessary

energy is available for heating and cooling, respectively, and to support essential

services such as hospitals. One of the important prerequisites for accurate

forecasting is clean data. The objective of this work is to clean the data for the

purpose of being used to train a forecasting model. Training a model on a time

series containing anomalous data typically results in erroneous and biased
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parameters [25, 27, 94]. There are numerous causes for anomalous data. Manually

examining time series for all causes of anomalies is a tedious task and for large data

sets an infeasible one; thus the need for an automated, repeatable, and accurate

algorithm for data cleaning.

An essential component of data cleaning is domain knowledge. Domain

knowledge consists of a predefined set of templates representing patterns in the data

or a description of events that constitute anomalous behavior [2, 10]. For example,

the delivered energy during a power outage may be accurate but still anomalous,

because it does not depict the true demand as if the power outage had not occurred.

For accurate results, the inputs of the forecasting models need to represent the

historical demanded energy, as opposed to the supplied energy. A power outage is

one example of an event that will be incorporated into the proposed data cleaning

process. To make the data cleaning problem tractable, this dissertation will focus on

the electric and natural gas domains, specifically detecting and imputing anomalies

to predict accurately residential, commercial, and industrial energy demand.

The next sections of this chapter present the contribution of this work,

provide an overview of the energy industry, and describe causes of anomalous data

in the energy field.
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1.2 Contributions

This thesis makes two major contributions. The first is an anomaly detection

algorithm that consists of finding anomalies in energy time series and classifying the

anomalies by looking at possible causes. The second contribution is a data

imputation algorithm that estimates a replacement value for the anomalous data.

Thus, the novel contributions of this thesis address the problem of cleaning time

series energy data with minimal human input. The proposed algorithms are

computationally tractable, repeatable, accurate, and automatic.

Anomaly detection and data imputation have been studied across various

disciplines such as nursing, engineering, and economics. Chapter 2 of this

dissertation presents existing outlier and anomaly detection techniques found in the

literature. These techniques typically perform well on simulated data sets. However,

on real data sets, these techniques do not yield accurate model parameters and

estimates. A new probabilistic approach for anomaly detection is developed based

on hypothesis testing that takes into account the number of samples in a data set

and efficiently identifies anomalies. Given an energy time series, the data set is

analyzed to extract domain knowledge features. Then the anomalies are found using

the time series residuals. The data replacement is performed using multiple

regression imputation. The contributions of this dissertation are both theoretical

and practical.
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The next section of this chapter presents an overview of the energy industry.

1.3 Energy Industry Overview

This section presents both the natural gas and electric industries. The categories of

customers in each industry also are presented here.

1.3.1 Natural Gas Industry

Natural gas is a fossil fuel and nonrenewable source of energy that is extracted from

the ground. Figure 1.1 illustrates the natural gas industry from production to end

use.

Figure 1.1: The natural gas production, transmission, and distribution system

(adapted from [34])

In the production component of the system, the oil and gas extracted from

wells are separated into oil, water, and natural gas. The natural gas is processed at
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the plant to remove undesired hydrocarbons and other non-hydrocarbon gases.

After its processing at the plant, the natural gas is transported to local distribution

companies through pipelines. Natural gas local distribution companies (LDCs) are

responsible for the distribution component of the system by supplying gas to their

customers and storing gas for peak demand times. The four types of customers

encountered in the natural gas industry and their uses of natural gas are [34, 73] :

• Residential customers use natural gas for cooking, space heating, space

cooling, and running appliances such as clothes dryers and water heaters.

• Commercial customers use natural gas for space heating and cooling and

water heating. Commercial customers are retail and service shops,

administrative buildings, banks, schools, universities, health care buildings,

and hotels.

Consumption of natural gas by residential and commercial customers is

weather dependent.

• Industrial customers use natural gas to run their manufacturing processes

such as hydrogen and petroleum refining, and production of pulp, paper,

metals, stone, clay, glass, and plastic.

• Electric power plants use natural gas to generate electricity.

The electric industry is presented in the next section.
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1.3.2 Electric Industry

Electricity is a secondary energy source that is produced from the conversion of

other energy sources such as coal, solar, and natural gas. Figure 1.2 illustrates the

electric industry from the generation at the power plant to the delivery at the

customers.

Figure 1.2: Electric power generation, transmission, and distribution system (adapted

from [34])

Electric power is generated at power plants and transported to substations

via large, high-voltage transmission power lines. Transformers are used to step up

voltages for transmission and step down voltages for distribution. A local

distribution system of smaller, lower-voltage distribution lines moves power from

substations and transformers to customers. There are four types of customers in the

electric industry [34].
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• Residential customers use electricity for lighting, heating, cooling, cooking,

and powering appliances and equipment.

• Commercial customers use electricity for lighting, heating, and cooling.

Commercial customers are retail and service shops, administrative buildings,

banks, schools, universities, health care buildings, and hotels.

The short term consumption of electricity for residential and commercial

customers is influenced by weather.

• Industrial customers use electricity to power and run equipment for their

manufacturing processes, in addition to their daily usage for heating, cooling,

and lighting.

• Transportation customers are electric cars and trains that use electricity

as a power source.

The natural gas and electric consumption data are collected per customers

type and per operating area. An operating area is a region comprised of a specific

set of customers. The data is analyzed, and causes of anomalies are found. The next

section of this chapter presents the types of anomalous data that have been

encountered in the context of energy demand prediction and explains their causes.
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1.4 Anomalous Data in the Energy Domain

Anomalous data can be missing data, unknown patterns, or data modified from its

original value [69]. Understanding the sources of anomalies in energy time series

data plays an important role in their detection because the definition of false

positives depends on the context. This dissertation analyzes data sets representing

the reported consumption for residential, commercial, and industrial customers. For

those categories of customers, sources of anomalous data include:

• Missing data or missing components of aggregated data occur when

there are no data values for a specific observation in a univariate data set or

when there are no data values for a particular variable of a multivariate data

set. Missing data primarily results from errors in data collection or data entry.

• Electric power generation is only relevant to the natural gas domain and

occurs when the natural gas load used for the generation of electric power is

included in the consumption of residential, commercial, or industrial

customers. An example of power generation in a natural gas data set is

presented in Figure 1.3. Figure 1.3 depicts an abnormally high consumption of

natural gas during the summer of 2001, for an operating area where summer

loads are typically flat.

• Main breaks are unplanned events that occur to the normal consumption of
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Figure 1.3: Daily natural gas reported consumption for operating area 1

energy, such as a backhoe hitting a pipeline, a tornado knocking down power

lines, hurricane, heavy snow days, or service outages.

• Näıve disaggregation or a stuck meter occur when a normally variable

energy load does not vary across several meter reporting periods. An example

of stuck meter is presented in Figure 1.4. Figure 1.4 shows a constant natural

gas consumption load from 10 April 2011 to 24 May 2011.

• Negative energy consumption typically is the result of a system

misconfiguration. Energy consumption can be zero but not negative. Negative

energy readings may be reported because different pieces of the system

(pipelines, types of customers, or corrections) have been mistakenly merged

together. Figure 1.5 shows examples of negative flow values that occurred
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Figure 1.4: Daily natural gas reported consumption for operating area 2

Figure 1.5: Daily natural gas reported consumption for operating area 3
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apparently at random in the natural gas time series data of operating area 3.

• Human error yields unexpected data values resulting from a bad query,

incorrect manual entry reporting, or meter misconfiguration.

• Mismatched meter factor or mismatched units of aggregated data

occur when the meter factor is switched during data collection (usually, the

energy load for an operating area is composed of energy loads from various

territories) without applying the adjustment factor to previous data (for

example kilowatts to watts). It also occurs when the units between subsets of

the data are different, and the proper conversion is not applied when merging

the data.

• Outliers are data points that are dissimilar to the remaining points in the

data set [40]. If there is no correlation between energy consumption and the

factors driving the consumption, the data point is considered an outlier if no

other cause is identifiable.

After their detection, the anomalous data are imputed to obtain a clean

signal. The next section presents an outline of the rest of the dissertation.

1.5 Outline of the Dissertation

Chapter 1 of this dissertation introduced the problem of data cleaning and its

importance. It also presented the contribution made by this research and gave an
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introduction to the energy domain. Chapter 2 provides a literature survey of the

techniques used for outlier detection and data imputation in various domains.

Probabilistic, machine learning, and statistical approaches have all been used to

address the problem of data cleaning. These approaches are presented in Chapter 2

along with the advantages and disadvantages of each approach. An explanation of

why some techniques work well in simulated data sets but do not yield good results

in practice is also made. Chapter 3 and Chapter 4 present the algorithms developed

for data cleaning. The role and contribution of each algorithm to the data cleaning

problem is also explained. Chapter 5 presents the results obtained on simulated and

real data sets. For the simulation case, the absolute percentage error (APE)

between reported and imputed values are calculated. The APE evaluates the false

positive rate of the anomaly detection algorithm and the performance of the

imputation model. For the real data sets, original and clean data sets are used to

forecast out-of-sample signals and compute root mean squared error (RMSE) and

mean absolute percentage error (MAPE) measures. Chapter 6 presents a summary

of the objectives, the solution proposed, and the contributions made. A conclusion

and future research topics on the subject conclude this dissertation.
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CHAPTER 2

ANOMALY DETECTION AND DATA IMPUTATION LITERATURE
REVIEW

Data cleaning is the process that consists of detecting and imputing

anomalous data [96]. The detection step consists of identifying different types of

anomalous data while the imputation step consists of deciding on possible

corrections for the anomalous values found. This chapter presents the categories of

techniques that have been used for anomaly detection and data imputation. A

summary of approaches in each category (probabilistic, statistical, and machine

learning) is presented along with advantages and disadvantages of each approach.

The novelty of the data cleaning algorithm with respect to existing approaches also

is presented.

2.1 Anomaly Detection

The first step of the data cleaning process is to detect anomalous data. Anomaly

detection refers to the problem of finding patterns in the data that do not conform

to expected behavior [24].

Many authors have studied the problem of anomaly detection in various

fields such as finance, health care, communication networks, and information

technology [90]. The literature depicts two types of outliers in time series data:
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additive outliers (AO) and innovative outliers (IO) [28]. An additive outlier is a

single observation affected by an anomalous behavior, while an innovative outlier is

induced by a random process that also affects the subsequent observations [25].

Typically, additive outliers need to be deleted or replaced because they induce

biased variances and estimates [71]. Therefore, this dissertation focuses on additive

outliers. The anomalies presented in Section 1.4 are particular cases of additive

outliers. Innovative outliers occur as the result of a feedback system that induces an

undesired process. Typically, innovative outliers do not require a correction of the

measurements because they are noise and usually get corrected when the time series

data are modeled [50].

Multiple outliers are especially difficult to detect because of masking, which

occurs when one outlier is not detected because of the presence of others [50]. Grané

and Veiga showed that masking can be reduced by sequentially correcting anomalies

[27, 37].

Graphical approaches such as box-and-whisker plots also have been used for

outlier detection, but such approaches are tedious for large data sets and require

human input and expertise to obtain accurate results [47, 97]. Therefore, more

automatic techniques usually are preferred. The three types of outlier detection

approaches that are presented in this chapter are probabilistic, statistical, and
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machine learning methods [43]. The next sections of this chapter present the three

categories of outlier detection approaches.

2.1.1 Probabilistic Approaches

Probabilistic approaches use probability distribution functions (pdf) to fit the data

and calculate parameters of the pdf. Probabilistic approaches identify outliers as

data points whose probability is less than some chosen threshold, with respect to

the estimated distribution of the data [22]. The anomalies in this case are the data

points that deviate considerably from other members of the population [40].

There are two types of probabilistic approaches: parametric and

nonparametric. Parametric methods use predefined distribution functions that can

be described using a finite number of parameters, for example a Gaussian pdf,

which is defined by the mean and variance. Nonparametric methods estimate the

density function and the parameters of the model from the data [13].

2.1.1.1 Parametric Approaches

Parametric approaches assume that the data come from a family of known

distributions. Buzzi-Ferraris and Manenti developed an approach that uses either

Gaussian distribution functions or the median absolute deviation (MAD) for outlier

detection [22]. The normal distribution and the MAD use the mean and median as

measures of centrality, respectively, and the variance and MAD as measures of
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variability, respectively, to fit the data. All data points with values above the

threshold corresponding to a probability of 0.95 (5% error) are considered outliers

[22]. These techniques do not take into account the number of samples in the data

set, hence yielding many false positives for large data sets. Also, the mean and

standard deviation are very sensitive to outliers [56].

The main disadvantage of parametric methods is that most distributions are

univariate, and the underlying distribution of the observations needs to be known in

advance. However, in real data sets, the underlying distribution of the data is not

known [8, 67]. Also, there is not an optimal rule for choosing or calculating a

rejection threshold.

2.1.1.2 Nonparametric Approaches

Distance-based and density-based methods are nonparametric approaches widely

used for outlier detection found in the literature [11].

Distance-based Approaches

Distance-based approaches use the distance between a point and its neighbors to

determine if the data point is anomalous. These approaches are efficient on

multidimensional data sets [5, 52, 53] but are computationally expensive (usually

O(n2) time, where n is the number of samples in the data set) [90]. An example of a
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distance-based algorithm is presented in Figure 2.1, where the radius r is calculated

from the spacial distribution of the data.

Figure 2.1: Example of a distance-based algorithm

A data point p is considered an outlier if at most α percent of all other

points have a distance to p less than r [52], where the threshold α is a chosen

parameter. Outliers are depicted by p1 and p2 in Figure 2.1, with a chosen threshold

of 1% for 50 data points.

Distance-based approaches can be combined with clustering techniques such

as the k-nearest neighbor to identify outliers [80], but identifying a good distance

measure is difficult in real data sets.

Density-based Approaches

Distance-based approaches only take a global view of the data set. Density-based
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approaches overcome this shortcoming by taking a local view of part of the data set

[16]. Density-based approaches find anomalies by looking at the local density of the

neighborhood of a point. The density of a data point is measured by the number of

objects within a given area (or volume) [16]. Density-based techniques score outliers

versus the remaining points of the distribution using different measures such as local

outlier factors [17], kernel estimation, and Parzen window [42, 65, 91]. An example

Figure 2.2: Example of a density-based algorithm using a local outlier factor

of a density-based algorithm using a local outlier factor is presented in Figure 2.2,

with two clusters C1 and C2.

According to distance-based outlier detection approaches, all points in C2, p1
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and p2 are outliers because the cluster C1 is predominant. The result is erroneous

because there are two clusters. The data points are scored using the distance-based

method. The points p1 and p2 are outliers because their respective distances to C1

and C2 are greater than the radius of the clusters.

Local outlier factor and kernel estimation techniques use a local

distance-based approach for the computation of their scores. However, Parzen

window methods interpolate the data to estimate the distribution from which the

sample was derived. Density-based approaches are computationally expensive for

large data sets and yield false positives because they focus on determining the top-n

outliers, where n is a chosen parameter.

Other Approaches

Other nonparametric approaches include ranking or scoring all data according to

similarities and differences to determine which ones are inconsistent [17, 24, 101].

Histogram analysis also is a widely used nonparametric technique, in which the

frequency of occurrence by classes of data is studied instead of the data itself. The

density estimation of the histograms becomes the main issue because the shape can

vary significantly depending on the ordering of the classes [36].

Mixture models are another probabilistic approach used for anomaly

detection and classification that represent subpopulations within an overall
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population. Gaussian mixture models (GMM) estimate the density of the data

using a weighted combination of normal distributions. Tarassenko, et al. studied the

detection of masses in mammograms using Parzen windows and Gaussian mixture

models [91]. The authors showed that GMMs do not work well when the number of

training samples is very small, and that Parzen windows work much better on a

small number of training samples, but yield false positives. Gaussian mixture

models also were used by Tax and Duin to reject outliers based on the data density

distribution [93]. They showed that the challenge in using GMMs is selecting the

correct number of mixtures. Also, GMM approaches make the assumption that the

abnormalities are uniformly distributed outside the boundaries of normality. GMMs

work well for multivariate data and are a common descriptor of data, but the

outliers need to be well defined.

Bouguessa proposed a probabilistic ensemble approach that uses scores from

existing outlier detection algorithms to discriminate automatically between outliers

and the remaining points in the data set. Gaussian mixture models, distance-based

approaches such as the k-nearest neighbor, and density-based approaches such as

the local outlier factor (LOF) are existing techniques that Bouguessa uses for the

ensemble model [14]. Each technique provides a score to every data point, and the

results are combined to decide which data points are outliers. The ensemble
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approach developed by Bouguessa provides better accuracy compared to

conventional techniques.

The probabilistic approaches presented above are not able to include domain

knowledge. Probabilistic approaches also considered the data as a set of samples

without being able to distinguish between features [77]. To incorporate domain

knowledge in anomaly detection algorithms, statistical techniques such as

auto-regressive moving average (ARMA) or linear regression have been studied and

applied to the problem of anomaly detection. The next section presents statistical

anomaly detection approaches.

2.1.2 Statistical Approaches

Auto-regressive moving average with exogenous inputs (ARMAX) models and linear

regression have both been studied for outlier detection [35, 37, 100, 106]. In

statistical approaches, anomalies are data points that deviate, relatively to a chosen

threshold or a distance measure, considerably from their predicted values [90].

Anomalies are detected by analyzing the residuals (difference between actual and

estimated values). The anomalies affect the structure, parameters, and variance of

the models [12]. Therefore, the residuals expose the anomalies.

ARMA models provide a parsimonious description of a stochastic process,

where the parameters and constants of the model are derived from the data [15].
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The models have two polynomial parts, an auto-regressive function that is

stationary and a moving average function that is invertible. ARMA models are

efficient at detecting outliers, but the exact order of the polynomial functions for

real time series data is difficult to identify [15, 89].

Regression models describe the relationship between a variable to be

explained (dependent variable) and its explanatory variables [32]. If the relationship

between the dependent and explanatory variables is linear, the models are called

linear regression models. An example of a linear regression model for the electric

consumption of operating area 4 is presented in Figure 2.3, where the dependent

variable is the electric load consumption, and the independent variables are the

weather inputs. HDD65 denotes the heating degree days at reference temperature

65◦F, and CDD75 denotes the cooling degree days at reference temperature 75◦F(
HDD65 = max(0, 65 - Temperature) and CDD75 = max (0, Temperature - 75)

)
.

The red lines depict the linear trends found in the data, and the slopes of those lines

are the coefficients of the linear regression model which is given by the equation

yt = 550 + 5HDD65− 20CDD75.

Linear regression models are efficient at using domain knowledge features,

because they can be defined as explanatory variables [12, 31, 44]. The explanatory

variables need to capture the dynamics of the system. The advantage of linear

models is that computationally efficient algorithms exist to calculate the model
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Figure 2.3: Scatter plot of electric load consumption vs. temperature for operating

area 4. The red lines depict the trends of the linear regression model.

coefficients. If the dependent variables are explanatory, linear regression is able to

identify the characteristics of the time series [66]. Wisnowski, et al. performed an

analysis of linear regression models, showing that they perform well in low

dimensions and for data sets containing few outliers [102]. Yuen and Mu proposed

an approach to calculate the probability of a data point being an outlier by taking

into account not only the optimal values of the parameters obtained by linear

regression but also the prediction error variance uncertainties [105]. Zou, et al.

proposed an approach that uses linear regression in combination with a penalty

function to detect outliers [109]. The disadvantage of using a penalty function is
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that the design of the tuning parameters needs to be precise. Therefore, penalty

function strategies do not guarantee good results on real data sets. For

multidimensional data sets, the linearity of the models becomes a limitation, and

the definition of the independent variables also becomes complex. Lee and Fung

showed that linear and nonlinear regressions can be used for outlier detection, but

used a 5% upper and lower threshold limit to choose outliers after fitting, which

yielded many false positives for large data sets [59]. Linear regression also has been

combined with clustering techniques for the detection of outliers [1].

Hypothesis testing is another statistical technique that draws conclusions

about a sample point by testing whether it comes from the same distribution as the

training data [67]. Measures such as the t-test and the ANOVA table, which

assesses whether the means of two groups of data are statistically different from

each other, can be used on multiple subsets of the data to depict the variation of

means in subsets that contain anomalies. Also, a level of significance, which

corresponds to the probability of incorrectly rejecting the true null hypothesis,

needs to be chosen. In statistics, the levels of significance are usually chosen to be

0.05 or 0.01. For smaller intervals where a larger error rate is necessary, 0.05 is

selected [58]. For larger intervals in which there is more confidence and where a

smaller error rate is necessary, 0.01 is selected [58].

Most statistical algorithms are designed for offline anomaly detection because
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of performance. The parameters are usually calculated on historical data. For larger

data sets, the estimation of the parameters at each step of the iteration for online

anomaly detection becomes computationally expensive. However, statistical

methods also have been used successfully for on-line anomaly detection, especially

in wireless networks [64, 104]. Machine learning approaches have been developed to

learn features from the data itself without prior assumptions of distributions or

parameters. Machine learning approaches are presented in the next section.

2.1.3 Machine Learning Approaches

Machine learning approaches have been used for anomaly detection in network

intrusion, fraud, medical health, and image processing [41, 91, 107]. Machine

learning techniques learn anomalous features from a training set and use them to

make predictions on an unseen testing set. There are two types of machine learning

tasks: supervised learning, which consists of inferring a function from labeled data,

and unsupervised learning, in which the algorithms are trained on unlabeled

examples [70]. Supervised learning approaches are classification-based, while

unsupervised learning approaches are clustering-based.

2.1.3.1 Clustering-based Approaches

Clustering-based approaches aim to partition the data into meaningful groups

(clusters) based on the similarities and relationships between the groups found in
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the data [38]. Clustering-based approaches have the objective to assign a score or

label to each instance that reflects the degree to which the instance is anomalous

[90]. Each data point is assigned a degree of membership for each of the clusters.

Anomalies are data points whose cluster memberships are below a given threshold.

The accuracy of the techniques depends on how well the structures of the clusters

are represented.

The k-means algorithm is a simple iterative clustering approach used for

outlier detection. It consists of partitioning the data into k clusters by assigning

each data point to its closest cluster centroid and then choosing new centroids for

the clusters by calculating their means [103]. The algorithm converges when the

cluster assignments no longer change. An approach for outlier detection using the

k-means algorithm is to select the top n points that are the furthest away from their

nearest cluster centers as outliers [26]. This approach has a near-linear time

complexity but yields false positives and negatives because outliers are masked by

the clustering [26]. Another approach is to used the (k, n)-means algorithm which

simultaneously find the k clusters and n outliers [108]. The problem is NP-Hard,

but local optima can be found [49].

The problem with clustering approaches is that a set of anomalies can be

considered a cluster rather than anomalies and vice versa, hence providing false
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positives and negatives [56]. Also, the cluster degree of membership threshold is

difficult to determine correctly.

2.1.3.2 Classification-based Approaches

Classification-based approaches find a concise model of the distribution of class

labels in terms of predictor features [55]. The resulting classifier is used to assign

class labels to the testing samples and to determine whether they are anomalous. A

classifier is an algorithm with features as input that produces a label but also

confidence values as outputs [74]. There are several machine learning classification

techniques such as neural networks and support vector machines.

Neural networks have been used for outlier detection in diverse domains

[41, 91, 107]. Neural networks select one model from a set of allowed models with

the goal of minimizing a cost function. An outlier in this case is an observation that

does not conform to the pattern of the selected model. The advantage of neural

networks is that they can differentiate between anomalies from different classes. The

drawback of neural network models is that the training examples and the cost

function need to be well defined.

Support vector machines (SVM) are based on finding the optimum

hyperplane that separates two data classes [20]. The distance between the

separating hyperplanes is called the margin. An SVM classifier finds the maximum
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margin necessary to separate two data classes. An example of a support vector

machine algorithm result is presented in Figure 2.4. There are two classes of labeled

data, represented by squares and dots, and named C1 and C2, respectively. The

optimal and separating hyperplanes, along with the maximum margin m, also are

depicted in Figure 2.4. The data point p1 is an outlier because it is misclassified.

Figure 2.4: Example of a support vector machine algorithm

Another family of classifiers widely used because of their performance are

Bayesian classifiers, which combine probabilistic and machine learning approaches.

They apply Bayes’ theorem with strong independence assumptions between the

features given the classes [81]. The anomalous features are learned on a training set

and used to classify any unseen data points as anomalous or not. Because time series
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data are not the outcomes of a random process, Bayesian techniques are difficult to

apply to time series data. Therefore, the data is transformed from the time domain

to a phase space to extract the multidimensional features of the data [79, 85]. An

approach developed by Sauer and Yorke demonstrated that transforming the signal

from a time domain to a phase space improves the classifier [85]. The approach

works well for small training samples and for multivariate data. Bayesian classifiers

are robust because they model the underlying distribution of the data.

The evaluation of classifiers are based on prediction accuracy. Because

anomalous classes are usually much smaller than normal classes, measures such as

precision, recall, and false positive percent are more appropriate to evaluate the

results of the classifiers. The drawback of supervised anomaly detection is that they

require the existence of a training set with both anomalous and clean data [90].

Therefore, they yield false positives if they are not accurately trained.

Classification-based approaches are efficient on multidimensional data sets and are

able to highlight features in a data set. They also have a low complexity and are

able to classify any unseen data points according to the training features.

Machine learning approaches have been developed to learn features from the

data itself without prior assumptions of distribution or parameters. However,

modeling the underlying distribution of data sets using probabilistic approaches can

be used to improve the accuracy of machine learning techniques.
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To make valid and efficient inferences about the data, anomalous data needs

to be imputed after their detection. The anomalous data are marked as missing,

and missing data imputation techniques are used to find replacement values. The

next section of this chapter presents approaches used in the literature for data

imputation.

2.2 Data Imputation

Data collection is often costly. Usually, there are not enough data points to discard

the anomalous and missing ones. In this case, data replacement becomes important.

Ad hoc edits are avoided because they produce biased, inefficient, and unreliable

results [86]. Therefore, an imputation of the missing data is necessary. Data

imputation consists of discarding or replacing missing values or fields with suitable

or substitute estimates. The problem is found in various fields such as the social

sciences, medical fields, and engineering. Data imputation techniques are chosen

based on the missingness of the data [48].

There are two types of missingness of the data: missing completely at random

(MCAR) and missing at random (MAR). Data is MCAR if the cases with missing

data are a random subset of the cases with complete data and MAR if the cases

with missing data are related to the cases with complete data [82]. For example, let

us consider the data collected and presented in Table 2.1 for an operating area. The
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data is composed of flow values, date stamps (from 01 through 08 January), and

actual temperature values and contains missing temperature and flow values.

Table 2.1: Example of multivariate data set with missing values

Date 01/01 02/01 03/01 04/01 05/01 06/01 07/01 08/01

Flow 500 300 450 375 425 325

Temperature 65 70 55 60 57 58

If there is no correlation between missing temperature values and missing

flow values, the missing data is MCAR. If all missing temperature and flow values

have the same date stamps, the missing data is MAR. In practice, data are assumed

to be MCAR because the reasons for the data being missing are beyond the control

of the researchers.

MCAR cases are either discarded or replaced. MAR cases use model-based

methods for data imputation [39]. Little’s test of MCAR is a statistical test that

can be used to test the missingness of a multivariate data set [61]. For bi-variate

data and with missing data confined into a single variable, Little’s test is reduced to

a standard t-test. The next sections of this chapter present the various imputation

methods found in the literature depending on the data missingness.
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2.2.1 Imputation Methods for Data Missing Completely At Random

There are three possible ways of imputing MCAR data. Missing data can be

ignored, replaced by known values, or replaced by values estimated using the data

features.

2.2.1.1 Imputation Using Only Valid Data

There are two methods for imputing missing data using valid or available data:

complete case analysis or listwise deletion and available case analysis or pairwise

deletion. Complete case analysis consists of excluding all cases with missing values.

It is the easiest data imputation technique and is usually the default procedure in

most statistical packages [39]. Available case analysis consists of using all available

data to estimate parameters of the model. In listwise deletion, cases with partial

data are not considered for parameters estimation, as opposed to pairwise deletion

[78]. In multivariate data sets, available case analysis uses different sets of samples

for different parameter estimation. Because parameters are estimated from different

sample sets, it is difficult to compute standard errors [86], and the estimates of the

parameters are biased.

Let us consider again the data set of Table 2.1. The data set has two missing

flow values (corresponding to 02/01 and 06/01) and two missing temperature values

(corresponding to 04/01 and 07/01). The result obtained using listwise deletion
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imputation is presented in Table 2.2, which has all four days of either missing flow

or temperature deleted.

Table 2.2: Listwise deletion result for the data set of Table 2.1

Date 01/01 03/01 05/01 08/01

Flow 500 300 375 325

Temperature 65 55 60 58

The resulting pairwise deletion imputation performed on the same data set

of Table 2.1 is presented in Tables 2.3 and 2.4. To estimate the temperature and

flow variables, the data sets used are the ones from Tables 2.3 and 2.4, respectively.

The two samples sets resulting from available case analysis have different time

stamps and are therefore two distinct sample sets.

Table 2.3: Pairwise deletion for the data set of Table 2.1 on the variable “Tempera-

ture”

Date 01/01 02/01 03/01 05/01 06/01 08/01

Temperature 65 70 55 60 57 58

Table 2.4: Pairwise deletion for the data set of Table 2.1 on the variable “Flow”

Date 01/01 03/01 04/01 05/01 07/01 08/01

Flow 500 300 450 375 425 325

The main virtue of listwise and pairwise deletion is their simplicity. They are

effective when the data set contains few anomalies. However, they reduce the

sample size, which decreases the statistical power and the precision of parameters

and values estimation [84].
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2.2.1.2 Imputation Using Known Replacement Values

Imputing missing data on a variable using known replacement values consists of

replacing the missing data by a value that is chosen from an estimate of the

distribution of the variable [33]. The advantage of an imputation using known

replacement values compared to imputation using only valid data is that it retains

all the data and their features, hence improving the estimation of model parameters.

Data imputation methods using known replacement values are case substitution,

hot deck imputation, and cold deck imputation.

Case substitution consists of replacing the entire case containing missing

values with another similar non-sampled case [39]. Hot and cold deck imputation

methods replace missing values of one or more variables for a recipient with observed

values from a donor [4]. In cold deck imputation, the donor is an external source,

whereas in hot deck imputation, the donors are similar cases in the same data set.

For imputation techniques using known replacement values, a similarity

measure needs to be defined. Also, additional cases not in the training set and

external values are necessary to find good replacements. These imputation methods

are applicable only when the number of missing variables is limited.
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2.2.1.3 Imputation by Calculating Replacement Values

Imputation using only valid data and imputation using known replacement values

have the pitfall of requiring special formulas for standard errors and produce biased

estimates. Therefore, imputing missing data by calculating replacement values was

developed to overcome those limitations. The advantage of data imputation using

calculated replacement values is that it retains all the data and their features [63].

Mean substitution and regression are two methods used to compute replacement

values for missing data.

Mean substitution replaces missing values of a variable with the mean of the

observed values of that particular variable [84]. Mean substitution preserves the

mean of the distribution but distorts estimates of variance and covariance [62]. It is

best used for data sets containing few missing observations and when there is a

strong relationship between variables.

Regression methods impute missing values of a variable based upon its

relationship to other observed variable values (predictors). Single regression

imputation is the particular case of using only one predictor to estimate the

replacement value. The approach is univariate and does not suffice for

multi-features and multidimensional data sets. Also, the standard errors are too

small, and the imputed values do not reflect uncertainty because they are found

from only one predictor [83].
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In multiple regression imputation, multiple predictors are defined to model

the distribution of the data. They take into account the imprecision of estimating

the distribution of the variables with missing values [33]. Multiple regression is

robust at estimating missing values and efficiently handles patterns of missing data

[63]. It is also used to estimate the conditional distribution of an outcome given

specific inputs [99]. However, there should be a substantial correlation between the

variables with missing data and other variables. Also, the predictors variables need

to be well defined.

2.2.2 Imputation Methods for Data Missing At Random

Model-based approaches are suitable for the imputation of data missing at random

because they provide the best representation of original distribution of values with

the least bias [39]. Model-based approaches estimate replacement values for missing

data based on all non-missing data for a given variable. One of the model-based

approaches widely used for the imputation of MAR data is maximum likelihood.

Maximum likelihood estimation consists of drawing inferences from a likelihood

function. In maximum likelihood, parameter values with the highest probability are

assigned using a likelihood function. Then, the parameters are estimated based on

all available data, including the incomplete cases. The maximum likelihood

estimation can be done with algorithms such as expectation maximization.

Expectation maximization is a computational method for estimating likelihood from
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incomplete data sets in which the observed values provide indirect evidence about

the likely values of the unobserved ones [87]. The expectation step computes the

expected value of the complete-data log-likelihood and the maximization step

maximizes the resulting function to provide new parameter estimates [30]. Other

methods that can be used to estimate maximum likelihood include Bayesian

methods and Gaussian mixture models.

Maximum likelihood has the advantage of being able to handle high levels of

missing data. However, it is a large sample tool, and the sample should be large

enough for the estimates to be approximately unbiased and normally distributed

[86]. Only rarely does real data conform to normality, but many tools are available

to help preserve distributional shape [87]. Model-based approaches can also be used

to calculate replacement values for data missing completely at random (MCAR).

One of the main disadvantages of data imputation is that the imputed values

are treated as real data, which overstates their precision [63]. However, many

statistical methods used to study time series require samples with complete values,

or they yield biased and inadequate parameters estimation in case of large missing

data.
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2.3 Importance of our Data Cleaning Algorithm

The approach proposed in this dissertation for anomaly detection is a hybrid model

that combines the advantages of statistical and probabilistic methods to provide

accurate theoretical and practical results. Time series are not distribution sets.

Therefore, statistical approaches are used to extract domain knowledge of the data

sets and calculate the residuals. The residuals form a data set where anomalies can

be found in the tails of the distribution. Probabilistic methods are used to model

the residuals and calculate the probability of each data point to discriminate

between data belonging to the underlying distribution and anomalies.

After their detection, identified anomalies are marked missing and are

imputed. The process is done repetitively to avoid masking. Data imputation on

data sets still containing anomalies leads to higher than necessary prediction error

due to bias in the estimates. However, Nahi presented the case of recursive

estimation to correct the problem of biased estimates [72]. The recursion of the

process avoids biased parameter estimates in the analysis.

Because the data are time series in this dissertation, the missing data is not

ignorable unless it is located at the beginning or at the end of the data set. Usually,

the missing data will be missing completely at random because the anomalies are

additive outliers. Therefore, replacement values are calculated for data imputation

using multiple regression imputation. Multiple regression imputation is chosen
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because it represents a good balance between quality of the results and ease of use.

Multiple regression imputation also results in correctly estimated standard errors

and confidence intervals [33]. The trends modeled for anomaly detection using

statistical methods give a good basis of the general relationships among the

variables in energy data sets.

Often, data imputation depends on domain knowledge of the problem

studied. For example, imputation models for electric and natural gas demand

prediction are different. In this dissertation, the general regression model defined for

anomaly detection can also be used for energy time series imputation. However, the

model only provides a näıve imputation in case no other values are available.

Forecasting models for natural gas or electric time series can be substituted in the

algorithm to improve the data cleaning process. Kaynar, et al. presented a study of

forecasting natural gas demand using various models such as auto-regressive moving

average, artificial neural networks, and ensemble models [51]. Shen, et al. presented

a combination of various machine learning techniques to forecast electricity demand

time series [88]. Carmona, et al. also presented an electric demand forecast model

using neural networks [23]. Since 1993, the GasDay laboratory at Marquette

University has developed a variety of energy demand forecasting techniques and

analytical tools that are also presented in data cleaning examples in this

dissertation.
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This chapter presented a literature survey on anomaly detection and data

imputation. It also presented the motivation behind the methods chosen for data

cleaning in this dissertation. The next chapter of this dissertation presents the

hypothesis-driven anomaly detection algorithm that is the underlying method for

the data cleaning process.
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CHAPTER 3

HYPOTHESIS-DRIVEN ANOMALY DETECTION ALGORITHM

This chapter presents the first major contribution of this dissertation, an

anomaly detection algorithm based on probability distribution functions. The

hypothesis-driven anomaly detection (HDAD) algorithm is a probabilistic approach

that detects anomalies in a data set where the underlying distribution of the data

points is known or assumed. An example is presented to illustrate the algorithm.

The complexity of the algorithm is analyzed to conclude this chapter.

3.1 Algorithm

The hypothesis-driven anomaly detection algorithm is based on statistical

hypothesis testing. Let X be a set of observations assumed to be drawn from a

probability distribution function, and let x be an element of X. The extrema of the

data set X are identified as potential anomalies. A statistical hypothesis test

determines if an extremum is anomalous. The null and alternative hypotheses are

H0: (extremum is not anomalous) and H1: (extremum is anomalous), respectively.

The null hypothesis is rejected in favor of the alternative hypothesis with a

level of significance α, which is the probability of incorrectly rejecting the true null

hypothesis or committing a type I error. An α of 0.01 is used in this dissertation.
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Let the experiment E = {Classifying an extremum}. The possible outcomes

of the experiment E are “anomaly” or “not an anomaly”. Let p be the probability

that the chosen extremum is drawn from the underlying distribution of the

remaining elements in the data set.

p = P{x ∼ Distribution(X \ {x})}, (3.1)

where x is an extremum, and {x} is the set of all elements whose values are the

same as x. If the probability of “anomaly” in the experiment E is p, the probability

of “not an anomaly” is (1 - p). Each classification of an extremum is an

independent experiment. Therefore, the experiment E is a Bernoulli trial. The

problem is reduced to finding the number of Bernoulli trials needed to find an

anomaly in at least n trials and supported by the set of n samples. This

corresponds to the cumulative distribution function of a geometric distribution [76].

The cumulative distribution function of a potential anomaly should be less than the

level of significance α for the data point to be considered anomalous.

1− (1− p)n < α. (3.2)

When calculating the cumulative distribution function of the geometric distribution,

finite precision becomes a limitation. For a large sample size and a low probability

p, the value of the cumulative distribution function is truncated to zero. In this
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case, an approximation of the geometric cumulative distribution function in the

limit of the neighborhood of zero is used instead of Equation 3.2. The geometric

cumulative distribution function is 1− (1− p)n. Rewriting (3.2) yields

1− (1− p)n = 1− en ln(1−p). (3.3)

lim
p→0

ln(1− p) = −p. (3.4)

Therefore, for p � 1, (3.3) reduces to

1− e−np. (3.5)

Furthermore, if p � 1 and np � 1,

lim
np→0

1− e−np = np. (3.6)

The probability p depends on the extremum value and the underlying

distribution of the remaining points in the data set. By taking into account the

number of samples and the probability of each point belonging to the underlying

distribution, the hypothesis-driven algorithm sets an effective bound on the number

of potential anomalies in the data set. Most importantly, the algorithm detects
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Algorithm 1 Hypothesis-Driven-Anomaly-Detection

Require: data set X, level of significance α, assumed distribution Dist(X , β)

potentialAnomalies ← true

indices ← ∅

while potentialAnomalies do

% The minimum (x ) and the maximum (x ) values of X are chosen as potential

% anomalies, and the parameters of their corresponding distributions are found

Xmin ← X \ {x}
Xmax ← X \ {x}
Distmin ← estimate parameters βmin from Xmin

Distmax ← estimate parameters βmax from Xmax

% Compute the probability that the potential anomalies belong to the

% underlying distribution of the remaining data points

pmin ← Probability
(
xmin ∼ Distmin

)
pmax ← Probability

(
xmax ∼ Distmax

)
% Determine if x or x are anomalous based on the level of significance α

gmin ← 1− (1− pmin)n

gmax ← 1− (1− pmax )n

if (gmax < α) ∨ (gmin < α) then

% The extremum which has the lowest probability is considered anomalous

if (gmin < gmax) then

X ← Xmin

indices ← indices ∪ index({x})
else

X ← Xmax

indices ← indices ∪ index({x})
end if

else

% Exit condition: x and x are not anomalies at the level of significance α

potentialAnomalies ← false

end if

end while

return X , indices
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points that are most unlikely to be drawn from the assumed underlying distribution.

Therefore, the technique can be used with any assumed distribution.

The values of the two potential anomalies, x (maximum value of the data

set) and x (minimum value of the data set), are examined simultaneously at each

iteration of the algorithm. The extremum that has the lowest probability of

belonging to the assumed distribution of the remaining points in the data set, and

which the geometric cumulative distribution function value is less than α, is

considered anomalous [3]. The HDAD algorithm is presented in Algorithm 1. The

disadvantage of the HDAD algorithm is that the data set is assumed to be samples

drawn from a distribution. The next section presents an illustrative example to

explain the HDAD algorithm.

3.2 Hypothesis-Driven Anomaly Detection Algorithm Example

The residuals obtained from the time series of operating area 6 using a 6-parameter

linear regression model is used as example (see Subsection 4.3) and is presented in

Figure 3.1. The data set has 2,192 samples and the level of significance is 0.01.

Only the first iteration of the algorithm is presented here.

The maximum and minimum values of the data sets are potential anomalies,

presented in Figure 3.2. For this example, a normal distribution function is used to

calculate the probability of an extrema belonging to the remaining points in the
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Figure 3.1: Residuals calculated using the time series data set of operating area 6

and a 6-parameter linear regression model

Figure 3.2: Residuals data set with potential anomalies highlighted
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data set. The Gaussian probability distribution function is fit to the normalized

frequency of the residuals, presented in Figure 3.3.

Figure 3.3: Normalized frequency of the residuals fit with a Gaussian pdf, potential

anomalies, and mean value of the distribution

The probabilities of the extrema are calculated using the parameters of the

fitted normal distribution. The probabilities found (pmin = 2.65×10−7 and

pmax = 1.68× 10−7) are then used in Equation 3.2 to determine whether the

extrema are anomalous. gmin = 1− (1− pmin)2192 = 5.8×10−4, and

gmax = 1− (1− pmax)2192 = 3.7×10−4. gmin and gmax are both less than the level

of significance, but gmax is smaller than gmin. We conclude that the maximum value
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of the residuals set is an anomaly at the level of significance of 0.01. The residual

plot with the anomaly depicted is presented in figure 3.4.

Figure 3.4: Residuals plot with the first anomaly found depicted by a red cross

The next section presents a brief analysis of the computational complexity of

the HDAD algorithm and discusses the impact for very large data sets or for a

disk-based implementation.

3.3 Complexity Analysis of the HDAD Algorithm

The HDAD algorithm is able to handle very large data sets. Even for a disk-based

implementation, the run time is still reasonable. There are two options that can be

considered for the implementation of the HDAD algorithm, assuming a Gaussian
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probability distribution function. The two options are presented and explained

below.

3.3.1 Option 1: with sorting

Option 1 consists of first sorting a data set X. The sort operation requires

O(n log n) operations. After the sorting operation, the extrema are located at the

beginning and at the end of the data set. Therefore, selecting a potential anomaly is

done in O(1). Assuming a normal distribution, sum(X ) and sum(X2) are calculated

only once at the beginning of the algorithm in this case, which requires O(n)

operations. To compute the mean and the variance at each iteration of the

algorithm, the value represented by each potential anomaly is removed from the

sums accordingly, and the number of samples is modified, which requires O(1)

operations. If m is the number of potential anomalies found, option 1 requires

• Sort: O(n log n),

• Initial calculation for µ and σ2: O(n),

• Adjust µ and σ2: O(m).

In summary, option 1, which uses sorting, requires O(n log n) to detect anomalous

points in a data set.
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3.3.2 Option 2: with pointers

Option 2 consists of tracking the position and value of a potential anomaly at each

iteration using pointers. The operation of choosing an extremum requires O(n)

operations in this case. The initial computation of the mean and the variance

requires O(n) operations. The sums are also accumulated here to perform the

adjustment of the mean and the variance in O(1) as in option 1. Each adjustment

requires O(n) operations to remove an anomaly from the data set. If m is the

number of potential anomalies found, option 2 requires

• Find an extrema: O(n),

• Initial calculation for µ and σ2: O(n),

• Adjust µ and σ2: O(mn).

In summary, option 2, which uses pointers requires O(mn) to detect anomalous

points in a data set.

Overall, option 2 has a lower computational complexity than option 1 if m is

less than logn. The problem with a disk-based implementation is that a disk access

is many orders of magnitude slower than memory access, and the bandwidth of a

disk is about 50 times less than a single random access memory subsystem [57]. To

find a potential anomaly with option 2, the entire data set on the hard drive is

scanned. The adjust step in option 2 has a large hidden constant, in the case of a
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disk-based implementation. Thus, option 1 becomes the best option for a data set

that is too large to fit in memory. The cost of scanning the hard drive to find an

extrema is far greater than the cost of initially sorting the data set and knowing the

position of the extrema. Option 2 is used in this dissertation because the data sets

used do not exceed 12 years of data, and the position of the anomalies are necessary

for data imputation.

This chapter explained the HDAD algorithm along with an illustrative

example and discussed the complexity of the algorithm. However, probabilistic

approaches do not perform well on time series because of their variability.

Therefore, the HDAD algorithm is combined with statistical methods to perform

data cleaning on time series data. Chapter 4 of this dissertation presents the linear

regression data cleaning algorithm along with an illustrative example.
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CHAPTER 4

LINEAR REGRESSION DATA CLEANING ALGORITHM

This chapter presents the linear regression data cleaning algorithm. The

linear regression data cleaning algorithm models time series features using a linear

regression model and applies the HDAD algorithm on residuals to find the largest

anomaly at each iteration. The linear regression models are used to fit the historical

data set, and the process is done iteratively to reduce masking. The algorithm is

improved with a rule-based anomaly detection, which is an ensemble of energy

domain knowledge rules used to improve the data cleaning process. A description of

the inputs to the algorithm, which are energy information, weather, and level of

significance, is first provided. Then, the rule-based anomaly detection is described.

The linear regression data cleaning algorithm, which is a combination of rule-based

anomaly detection, HDAD algorithm, and linear regression models, concludes this

chapter along with an illustrative example.

4.1 Inputs to the Algorithm

The inputs to the data cleaning algorithm are energy information, weather, and a

level of significance. The energy information is the signal to be cleaned. The

temperature and wind are the weather data used as exogenous inputs to the

algorithms. They are used to model the amounts of energy necessary for heating



53

and cooling. The level of significance is the threshold at which a residual data point

is considered anomalous. A detailed explanation for each of these inputs is

presented in the next sections.

4.1.1 Energy Information

An energy time series is a sequence of N observations sampled uniformly in time

[15]. It represents the average daily or hourly consumption of natural gas or

electricity by operating area (a region comprised of a specific set of customers).

y = {yt, t = 1, ..., N}. (4.1)

An example of natural gas reported consumption from 01 September 2007 through

31 August 2013, for an example operating area is depicted in Figure 4.1. All data

sets presented in this dissertation are natural gas and electricity data from utilities.

However, the data sets are scaled to maintain confidentiality.

The measure of natural gas is the British thermal unit (Btu), which

corresponds to the amount of energy required to raise the temperature of one pound

of water by one degree Fahrenheit at the temperature at which water has its

greatest density (39◦F) [34]. The natural gas industry generally expresses natural

gas in Decatherms (Dth), where one Dth is equivalent to one million Btu. The
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Figure 4.1: Natural gas reported consumption of operating area 5 from 01 September

2007 to 31 August 2013

measure of electric power is in watts (W), which is the amount of power defined as

one joule in one second [46].

4.1.2 Weather

Both natural gas and electricity consumptions are influenced by weather conditions.

Temperature and wind affect the consumption of energy [98]. The relationship

between temperature and energy is nonlinear. This nonlinearity is caused by human

behavior. A degree day or degree hour is used to model this nonlinearity. The

heating degree days (HDD), heating degree hours (HDH), cooling degree days

(CDD), and cooling degree hours (CDH) are the differences between the mean daily
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or hourly temperatures and a base temperature [21]. The base or reference

temperature is the temperature below or above which heating or cooling is needed,

respectively [9]. If T is the daily or hourly average temperature for an operating

area and the heating reference temperature is TrefH ,

HDDTrefH or HDHTrefH = max(0, TrefH − T ). (4.2)

Similarly, cooling degree days or cooling degree hours are defined as

CDDTrefC or CDHTrefC = max(0, T − TrefC ), (4.3)

where TrefC is the cooling reference temperature.

Energy usage is also affected by wind. The wind speed influences how quickly

heat loss is conducted through buildings’ walls [29]. Therefore, the HDD and HDH

are usually wind-adjusted. There is no influence of wind on warmer days. Let w

represent the wind speed in miles per hour (mph). The wind-adjusted HDD is

HDDWTrefH = max

(
72 + w

80
,
152 + w

160

)
HDDTrefH . (4.4)

The wind-adjusted HDH (HDHWTrefH ) is also calculated using the same formula.

The wind-adjustment has been found in practice to not affect heating degree days at

8 mph [98]. Below 8 mph, the wind speed effect is propagated slowly, and the energy
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transfer is slower. Above 8 mph, the energy transfer occurs more quickly. The

temperature values used in this dissertation are expressed in degree Fahrenheit (◦F).

4.1.3 Level of Significance

The level of significance corresponds to the smallest probability value at which a

data point is considered anomalous. The level of significance used for data cleaning

in this dissertation is 0.01 because the data sets have enough sample points to

support this level of significance.

The next section of this chapter presents the rule-based anomaly detection.

The rule-based anomaly detection is a way of pre-processing the data, used to

improve the data cleaning process.

4.2 Rule-based Anomaly Detection

The rule-based anomaly detection is a set of energy domain knowledge rules used to

improve the data cleaning process. In this dissertation, the only rule used is missing

data replacement. The linear regression data cleaning algorithm is auto-regressive.

Therefore, all missing data points are imputed to avoid distorted estimates of the

linear regression model coefficients. The rule is to find all missing data in the set

and perform an imputation using calculated values at the beginning of the data

cleaning process. The new signal improves the data cleaning process, reduces

masking, and provides better estimates.
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The next section of this chapter presents and describes the linear regression

data cleaning algorithm. The role and use of each input also is explained in the

description of the algorithm.

4.3 Linear Regression Data Cleaning Algorithm

The hypothesis-driven anomaly detection (HDAD) algorithm is a probabilistic

approach that detects anomalies in a data set. However, energy time series are not

stationary and are not the outcomes of random processes. Therefore, the HDAD

algorithm is applied on residuals of time series, and the time series features are

extracted using other techniques.

A time series can be decomposed into four elements: trend, seasonal effects,

cycles, and residuals [6]. Therefore, the idea behind this approach is that fitting the

data with linear regression models extract the trend, seasonal effects, and cyclical

characteristics of the data set. The residuals found form a distribution of points in

which anomalies are detected using hypothesis testing. The algorithm uses an

n-parameter linear regression model for anomaly detection, where (n - 1) is the

number of inputs. The general form of the model is

ŷ = β0 + β1HDDWTrefH + β2CDDTrefC + β3y−1 (4.5)
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for a daily set, and

ŷ = β4 + β5HDHWTrefH + β6CDHTrefC + β7y−1 (4.6)

for an hourly set. Heating and cooling degree days can be calculated at multiple

reference temperatures for an operating area to capture the climate of the region.

Therefore, the number of model parameters varies according to the number of

reference temperatures. The y and ŷ represent the reported and estimated energy

values for a time t, respectively. The β0 and β4 are the baseloads or the minimum

amounts of non-varying load of energy. The reference temperatures, TrefH and TrefC ,

are the reference temperatures for heating and cooling, respectively. β1 and β5 are

the amounts of energy used per heating degree day or heating degree hour,

respectively, at reference temperature TrefH . The β2 and β6 are the amounts of

energy used per cooling degree day or cooling degree hour, respectively, at reference

temperature TrefC . The energy consumption for a particular day usually depends

also on the energy consumption and temperature of the previous day [44].

Therefore, the β3 and β7 are the changes in energy consumption between two

consecutive days or hours, respectively. The flow diagram of the linear regression

data cleaning approach is summarized in Figure 4.2.

At the first iteration, missing values and negative flow values are found and

imputed. Then, the linear regression model coefficients are re-calculated on cleaner
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Figure 4.2: Flow diagram of the linear regression data cleaning algorithm
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data at each iteration of the algorithm. The algorithm is assumed to extract all

time series properties without distorting anomalies. The estimated coefficients are

possibly erroneous at the beginning of the process because it is uncertain whether

the data set contains only one anomaly. An extremum is an anomaly if its

probability of belonging to the same distribution as the other residual values is less

than the probability of committing a type I error at the specified level of

significance α.

After an anomaly is removed, the process continues with the anomalous

value replaced by an imputed value. This step improves the data cleaning process

by removing masking. The model parameter estimation for anomaly detection

improves after each anomaly is replaced. The algorithm stops when no more

anomalies are identified. The final imputation values are recalculated on the clean

signal after all anomalies are found.

Because the data cleaning process is implemented iteratively to reduce

masking, at each iteration of the algorithm, the HDAD algorithm is modified to

report only the largest anomalous value in the residuals. The set of all elements in

the residuals data set, whose values are equal to the largest anomalous value, are all

considered anomalous and their positions are also returned by the HDAD algorithm.

The algorithm used to detect the largest anomaly value and the linear regression

data cleaning algorithm pseudo-codes are presented in Algorithms 2 and 3.
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Algorithm 2 Detect-Largest-Anomaly

Require: data set X, level of significance α, assumed distribution Dist(X , β)

indices ← ∅

% The minimum (x ) and the maximum (x ) values of X are chosen as potential

% anomalies, and the parameters of their corresponding distributions are found

Xmin ← X \ {x}
Xmax ← X \ {x}
Distmin ← estimate parameters βmin from Xmin

Distmax ← estimate parameters βmax from Xmax

% Calculate the probability that the potential anomalies belong to the underlying

% distribution of the remaining data points

pmin ← Probability
(
xmin ∼ Distmin

)
pmax ← Probability

(
xmax ∼ Distmax

)
% Determine if x or x are anomalous based on the level of significance α

gmin ← 1− (1− pmin)n

gmax ← 1− (1− pmax )n

% The extremum which has the lowest probability is considered anomalous

% Otherwise, the algorithm returns the empty set

if (gmax < α) ∨ (gmin < α) then

if (gmin < gmax) then

indices ← index({x})
else

indices ← index({x})
end if

end if

return indices

Usually, more complex models that include domain knowledge are suitable

for imputation because they model the particularities of each data set or utility

system. However, the linear regression model used for anomaly detection also can

be used for data imputation, in cases were no other model is available. The model is

simple enough to provide best-guess estimated values, but it is not complex enough



62

Algorithm 3 Energy-TS-Linear-Regression-Data-Cleaning

Require: energy time series y, temperature T , wind w, α, TrefH , TrefC , assumed

distribution Dist(X , β), imputationModel(A, γ), imputationInputs A

potentialAnomalies ← true

anomalies ← ∅

% Find and impute all missing flow values

anomalies ← find all missing elements of y

% Impute all anomalies found

replacementValues ← imputationModel(A, y, γ)

y(anomalies) ← replacementValues(anomalies)

% Calculate non-varying inputs to the anomaly detection linear regression model

detectionInputs ←
[
1 HDDWTrefH CDDTrefC

]
while (potentialAnomalies) do

% Include the first lag of y as input and calculate the estimated values ŷ

% and the residuals

detectionInputs ←
[
detectionInputs y−1

]
β ← Coefficients of the linear regression model LR(y, detectionInputs)

ŷ ← β × detectionInputs

residuals ← y − ŷ

% Find the largest anomalies in the residuals at the level of significance α

indices ← DETECT-LARGEST-ANOMALY
(
residuals, α, Dist(residuals, β)

)
if indices == ∅ then

% Exit condition: No more anomalies found

potentialAnomalies ← false

else

% Impute all anomalies found and continue iterating

replacementValues ← imputationModel(A, y, γ)

anomalies ← anomalies ∪ indices

y(anomalies) ← replacementValues(anomalies)

end if

end while

return anomalies, y
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to model all the particularities of a data set. The forecasting models also can be

composed of an ensemble of various techniques and can vary depending on the type

of energy data (natural gas and electricity). Various imputation models can be

substituted easily into the linear regression data cleaning algorithm. In this

dissertation, the imputation model used for energy time series is a forecasting model

using weather, data trends, and seasonality components.

The linear regression data cleaning algorithm illustrates both the anomaly

detection and imputation process. It also shows the iterative nature of the process.

Algorithm 3 also is applicable to the case of an hourly data set with daily inputs

replaced by hourly inputs. The next section presents an illustrative example of the

linear regression data cleaning algorithm.

4.4 Linear Regression Data Cleaning Algorithm Example

An illustrative example is presented in this section to clarify and explain the linear

regression data cleaning algorithm. The data set presented in Figures 4.3 and 4.4 is

the daily natural gas reported consumption of operating area 6, and ranges from 01

September 2007 to 31 August 2013. Figure 4.3 and Figure 4.4 show the time series

and scatter plots of the data set, respectively. The scatter plot shows the

relationship between the daily natural gas flow and the daily average temperature.

Coefficients of a 6-parameter linear regression model, calculated using least
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Figure 4.3: Time series plot of the natural gas reported consumption of operating

area 6

Figure 4.4: Scatter plot of the natural gas reported consumption of operating area 6
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squares fitting, are obtained with the HDDW evaluated at reference temperatures

65◦F and 55◦F and the CDD evaluated at reference temperatures 65◦F and 75◦F.

ŷ = β0 + β1HDDW55 + β2HDDW65 + β3CDD65 + β4CDD75 + β5y−1. (4.7)

The estimated values and the residuals, which are the difference between the

reported consumption and the estimated values, are calculated using the coefficients

of the linear regression model.

• First iteration

At the first iteration, the DETECT-LARGEST-ANOMALY algorithm is used to

find the largest anomaly in the residuals. The reported energy consumption, the

estimated values, the residuals, and the first anomaly found on the residuals are

depicted in Figure 4.5. The first anomaly found is the maximum value of the set of

residuals.

A 21-parameter linear regression model (inputs are historical load, trends,

seasonality components (day of week, week of the month, month of the year, and

holidays), weather information (HDDW, CDD, and the change in HDDW between

two consecutive days), and cross terms between weather and seasonality) is used to

calculate replacement values for the anomalies. The time series plot, with the
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Figure 4.5: Time series plot of the energy versus estimated values and plot of the

residuals with the first anomaly found depicted by a black cross

Figure 4.6: Time series plot showing the first anomaly and its replacement value

depicted with a red cross and a blue circle, respectively
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anomaly found and its corresponding replacement value depicted with a red cross

and blue circle, respectively, is shown in Figure 4.6.

• Second iteration

After the beginning of the second iteration, the time series signal is the original data

set with the first anomaly replaced. The 6-parameter linear regression model is used

to re-calculate a new set of residuals, in which the second anomaly is found at the

level of significance of 0.01. The new time series plot, with the first anomaly

replaced and the second anomaly found are shown in Figure 4.7.

Figure 4.7: Time series plot of the energy signal at the beginning of the second

iteration with the second anomaly found depicted by a red cross

The set of residuals found at the first and the second iteration, along with all

the anomalies found so far, are presented in Figure 4.8.
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Figure 4.8: Change in residuals from the first to the second iteration, with anomalies

depicted

Figure 4.9: Time series plot with the second anomaly found and the new replacement

values depicted
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The anomaly found at the second iteration is the minimum of the set of

residuals as opposed to being the maximum as in the first iteration. The

replacement values are re-calculated for all anomalies with the same model used at

the first iteration. The second anomaly found, along with the new replacement

values for all anomalies, are depicted on the time series plot in Figure 4.9.

New replacement values are re-calculated at each iteration because the data

gets cleaner as each anomaly is identified and replaced.

• Final iteration

The algorithm stops when no more anomalies are found. Final replacement values

are calculated for all the anomalies found. The result of the linear regression data

cleaning algorithm is summarized in Figures 4.10 and 4.11. Figures 4.10 and 4.11

depict all three anomalies identified and their corresponding replacement values

with red crosses and blue circles, respectively.

This chapter explained the techniques developed for data cleaning, along

with an example to clarify the algorithm. Chapter 5 of this dissertation presents the

evaluation of the data cleaning algorithm. A simulation study that evaluates the

false positive and negative rates of the algorithm is made. Utilities’ data sets also

are used to test the algorithm and evaluate the improvement of forecasting accuracy

obtained by cleaning the data.
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Figure 4.10: Time series plot depicting all the anomalies identified and their corre-

sponding replacement values
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Figure 4.11: Scatter plot depicting all the anomalies identified and their corresponding

replacement values
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CHAPTER 5

EVALUATION AND ANALYSIS OF THE DATA CLEANING
METHODS

This chapter presents the evaluation procedure for the data cleaning

algorithm, the results on various data sets, and an analysis of the results. First, data

sets and their pre-processing are described. Then, two sets of tests are performed; a

simulation study and utilities’ data study. The algorithm is evaluated on simulated

data sets. The anomalies presented in Chapter 1 are inserted in the simulated data.

The objective of the simulation study is to evaluate the false positive and false

negative rates of the algorithm, because the anomalies are known in advance. The

error between reported consumption and estimated replacement values can be

calculated to determine how well the imputation model approximates the data.

Various data sets from utilities are used in the second case study to test the

algorithm. Both the original data sets (not cleaned) and the cleaned data sets are

used to train a forecasting model. The forecasting models are evaluated on a testing

set. The improvement in forecasting accuracy obtained by cleaning the data is the

measure of effectiveness of the algorithm. To evaluate statistically the performance

of the algorithm, a cross-validation study is conducted. This provides a statistical

test of the difference in forecasting models trained on clean data versus those trained

on original data. The simulation and utilities’ data case studies are two different
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ways of evaluating the performance of the algorithm. The chapter concludes with an

analysis and discussion of the performance of the data cleaning algorithm.

5.1 Data Sets Description and Pre-processing

Data sets used in this chapter are confidential energy data obtained from Local

Distribution Companies (LDC), representing the reported consumption of natural

gas or electric energy on a given time period (daily or hourly). The data set used for

the simulation study also is derived from the reported consumption of an utility.

The energy time series data sets are detrended before being used for anomaly

detection. Energy time series data usually do not have the same trends for all years

in the data set. Depending on the efficiency of energy systems, increased number of

customers, or other reasons, the trends can be ascending or descending. This is a

challenge for anomaly detection because the years with low trends might be

mistaken for aggregated data with mismatched units. Also, the parameter

estimation for a linear regression model might not provide good results if the slope

of the trend is large. Therefore, the energy time series is detrended before being

used for anomaly detection. However, the original data set is used for data

replacement. There are various techniques that can be used to detrend energy time

series data. The technique developed by Brown et al. is used in this dissertation to
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detrend energy time series data before detecting anomalies [19]. The next section of

this chapter presents the simulation study.

5.2 Simulation Study

The simulated data set presented in Figures 5.1 and 5.2 is derived from the daily

reported natural gas consumption of operating area 7. The data set is from 01

November 2001 through 11 August 2014 for a total of 4,667 data points.

Figure 5.1: Time series plot of the simulated natural gas time series data set

No anomalies were found in the original reported natural gas consumption

for operating area 7. Additionally, the data set is detrended to have approximately

the same trends for all years in the data set. The detrended data set constitutes the
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Figure 5.2: Scatter plot of the simulated natural gas time series data set

simulated data set. Different types of anomalies are inserted artificially in the data

set, and the results of the linear regression data cleaning algorithm are presented for

each case. The absolute percentage error (APE), relative to reported flow, is

calculated between imputed and reported values in each case.

APE =

∣∣∣∣Reported flow− Imputed flow

Reported flow

∣∣∣∣× 100. (5.1)

An analysis of all the results is presented at the end of this section.
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5.2.1 Missing Values

Eight missing flow values are inserted into the data set from 05 through 12 January

2014. Missing values are found in the pre-processing step of the algorithm (see

Section 4.2). This case is studied to determine whether the algorithm returns false

positives in the presence of missing values. The data cleaning algorithm identifies

only the missing values as anomalies, and the results are presented in

Figures 5.3 and 5.4. Figure 5.3 depicts the missing values in the time series plot and

the replacement values calculated for all eight missing points.

Table 5.1: Imputation results for the simulation case of missing values

Date Reported flow Imputed flow APE

05-01-2014 602.40 543.15 9.84

06-01-2014 733.05 708.82 3.30

07-01-2014 1006.35 939.03 6.69

08-01-2014 870.82 833.62 4.27

09-01-2014 754.35 716.17 5.06

10-01-2014 605.47 572.92 5.37

11-01-2014 392.02 358.51 8.55

12-01-2014 541.72 495.49 8.53

Table 5.1 presents reported and imputed flow values and the absolute

percentage errors. Table 5.1 shows that the imputation model approximates the

reported flow within a 10% error.
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Figure 5.3: Time series plot of the data cleaning results for the simulation case of

missing values

Figure 5.4: Scatter plot of the data cleaning results for the simulation case of missing

values
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5.2.2 Extremely High Flow Values or Main Breaks

Two extremely high flow values are inserted into the data set to simulate main

breaks. The first value is inserted on 15 January 2004, which is in the winter season.

The second value is inserted on 03 August 2005, which is in the summer season.

The data cleaning algorithm results, presented in Figures 5.5 and 5.6, depict the

two anomalies found and their replacement values.

Table 5.2 presents the imputation results for this case and shows that the

imputed values are nearly the same as the reported flow values. There is a

maximum absolute percentage error of 1% between reported and imputed values in

the case of imputing extremely high flow values.

Table 5.2: Imputation results for the simulation case of extremely high flow values

Date Reported flow Anomalies Imputed flow APE

15-01-2004 1025.17 2525.18 1025.71 0.05

03-08-2005 103.56 1035.45 104.54 0.94
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Figure 5.5: Time series plot of the data cleaning results for the simulation case of

extremely high flow values

Figure 5.6: Scatter plot of the data cleaning results for the simulation case of ex-

tremely high flow values



80

5.2.3 Negative Flow Values

Seven negative flow values are inserted into the data set, from 24 through 27

February 2009 and 17 through 19 June 2009. The data cleaning algorithm results,

presented in Figures 5.7 and 5.8, depict the seven anomalies found and their

replacement values.

Table 5.3 presents the imputation results and shows that the maximum

absolute percentage error between imputed and reported flow values is about 2% in

the case of negative flow values. While any energy domain expert recognizes

negative flow values as anomalous, the point is that the data cleaning algorithm can

match the domain expert and therefore saves valuable time. In addition, the

algorithm provides good imputation values.

Table 5.3: Imputation results for the simulation case of negative flow values

Date Reported flow Anomalies Imputed flow APE

24-02-2009 688.65 -344.33 692.55 0.57

25-02-2009 591.91 -295.96 600.38 1.43

26-02-2009 547.42 -273.68 547.57 0.03

27-02-2009 421.95 -210.97 426.68 1.12

17-06-2009 120.53 -120.53 121.51 0.81

18-06-2009 124.80 -124.80 123.45 1.08

19-06-2009 111.34 -111.34 113.49 1.93
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Figure 5.7: Time series plot of the data cleaning results for the simulation case of

negative flow values

Figure 5.8: Scatter plot of the data cleaning results for the simulation case of negative

flow values
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5.2.4 Näıve Disaggregation or Stuck Meter

Five values are artificially inserted into the data set to represent a stuck meter. The

flow value for 20 April 2004 is used as the fixed value for all days from 21 through

25 April 2004. In this case, the data cleaning algorithm identifies four anomalies out

of the five inserted in the data set. The maximum absolute percentage error

between reported values for 20 and 21 April 2004 is 5.6%. Therefore, it is expected

that the reported value for 21 April 2004 is not considered anomalous.

The data cleaning algorithm results, presented in Figures 5.9 and 5.10, depict

the four anomalies found and their replacement values. Table 5.4 also shows the

imputation results for the case of stuck meter. Looking at Table 5.4, the maximum

absolute percentage error between reported and imputed values is about 4.5%.

Table 5.4: Imputation results for the simulation case of a stuck meter

Date Reported flow Anomalies Imputed flow APE

20-04-2004 160.43 160.43 160.43 –

21-04-2004 169.95 160.43 160.43 5.60

22-04-2004 312.31 160.43 326.11 4.42

23-04-2004 326.85 160.43 324.92 0.59

24-04-2004 305.10 160.43 291.45 4.47

25-04-2004 307.06 160.43 309.82 0.90
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Figure 5.9: Time series plot of the data cleaning results for the simulation case of a

stuck meter

Figure 5.10: Scatter plot of the data cleaning results for the simulation case of a stuck

meter
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5.2.5 Power Generation Load

Eight power generation simulated flow values are inserted in the summer season,

from 01 through 08 August 2003, to avoid confusion with the case of extremely high

flow values. The data cleaning algorithm results, presented in Figures 5.11 and 5.12,

depict the eight anomalies found and their replacement values.

Table 5.5 presents the imputation results in the case of power generation

load and shows that the maximum absolute percentage error between imputed and

reported flow values is about 3.5%.

Table 5.5: Imputation results for the simulation case of power generation load

Date Reported flow Anomalies Imputed flow APE

01-08-2003 112.80 225.52 109.65 2.79

02-08-2003 100.21 300.53 98.64 1.57

03-08-2003 107.17 321.60 106.42 0.70

04-08-2003 109.43 328.35 112.05 2.39

05-08-2003 108.08 324.22 108.98 0.83

06-08-2003 108.15 324.45 108.90 0.69

07-08-2003 111.97 336.00 113.47 1.34

08-08-2003 111.38 237.75 107.40 3.57

The next section summarizes the results obtained for all types of anomalies.

An analysis of the results and the various imputation absolute percentage errors

also is made.
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Figure 5.11: Time series plot of the data cleaning results for the simulation case of

power generation load

Figure 5.12: Scatter plot of the data cleaning results for the simulation case of power

generation load
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5.2.6 Simulation Study Analysis

Anomalies of various types were inserted artificially in various years and weather

seasons of the simulated data set. The data cleaning algorithm detects all points

that deviate considerably (the deviation is based on weather dependency and one

day ago flow) from the remaining points in the data set.

The imputation model has an accuracy of about 5%, except in the case of

missing data, where the accuracy is about 10%. The missing data case provides the

largest error because its detection process is not iterative. In the case of missing

data, all anomalies are detected at once in the beginning of the process and imputed

because the linear data cleaning algorithm is autoregressive.

Overall, the anomaly detection provides expected results, and the imputation

model provides good replacement values to the anomalous energy time series values.

The next section of this chapter presents the evaluation of the data cleaning

algorithm on data sets from local distribution companies. The improvement in

forecasting accuracy obtained by cleaning the data is the measure of effectiveness of

the algorithm because “actual” values do not exist.

5.3 Utilities Data Testing

The data cleaning algorithm is applied to reported electric and natural gas

consumption data sets. The reported consumption is called the original data set,



87

while the algorithm output is the clean data set. The clean and original data sets

are divided into training and testing sets. The training sets are used to train the

same forecasting model derived from Vitullo et al. [98]. The models are used to

calculate estimated values for the test sets and to compute out-of-sample errors.

The root mean squared error (RMSE) and the mean absolute percentage error

(MAPE) are both used as error measures in this dissertation. The RMSE is a unit

measure that estimates the difference between observed and estimated values [45].

RMSE =

√√√√√ N∑
i=1

(Reported flow− Imputed flow)2i

N
. (5.2)

The MAPE is a unitless measure that calculates the error as a percentage of the

actual values [7].

MAPE =
1

N

N∑
i=1

∣∣∣∣Reported flow− Imputed flow

Reported flow

∣∣∣∣
i

× 100. (5.3)

For both RMSE and MAPE equations, N is the number of observations. Both error

measures are two different ways of interpreting and analyzing the results. The errors

calculated on the test set with models trained on both the original and clean data

sets are compared to analyze the forecasting accuracy improvement obtained by

cleaning the data. The original, anomalies, and clean data sets are presented here,
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along with forecasting errors (RMSE and MAPE). An analysis of the error measures

concludes this section.

The average RMSE and MAPE are calculated, along with the errors by

month and by unusual day. “Unusual Day” is a term used to represent a day on

which an unusual weather event occured [75]. These unusual events are

weather-related events such as a sudden temperature increase or decrease, high or

low humidity, or extreme cold. The unusual days encountered in this dissertation

are coldest days, colder and warmer than normal days, windiest heating days, colder

and warmer today than yesterday, the first cold and warm days, high and low

humidity heating days, and sunny and cloudy heating days. An example of unusual

days depicted on a natural gas data set is presented in Figure 5.13.

Three examples are presented in this section. The data cleaning algorithm is

tested on two natural gas data sets and on one electric data set. In all the examples

presented in this dissertation, the last year of data is the test set, while the previous

years constitute the training set. The results graphs show the time series plot of

energy consumption over time and the scatter plot which shows the energy

consumption versus temperature, with the anomalies and replacement values

depicted on both plots. The imputation results also are presented here. In the

imputation tables, the anomalous values are presented along with their replacement

values.
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Figure 5.13: Example of unusual days for a natural gas data set

5.3.1 Example 1: Natural Gas Data Set of Operating Area 8

The first example is the reported natural gas consumption of operating area 8. The

data set is from 01 May 2004 to 31 July 2012. The data cleaning algorithm results

are presented in Figures 5.14 and 5.15. Additionally, the imputation results for the

data set of operating area 8 are presented in Table 5.6.

The training set is data from 01 May 2004 through 31 July 2011. The RMSE

and MAPE calculated on the test set from 01 August 2011 through 31 July 2012 by

month and by unusual day are presented in Figures 5.16 and 5.17, respectively.

The RMSE and MAPE calculated with forecasting models trained on the
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Figure 5.14: Time series plot of the data cleaning results for the natural gas data set

of operating area 8

Figure 5.15: Scatter plot of the data cleaning results for the natural gas data set of

operating area 8
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Figure 5.16: RMSE and MAPE by month for the original and clean data sets of

operating area 8

Figure 5.17: RMSE and MAPE by unusual day for the original and clean data sets

of operating area 8
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Table 5.6: Imputation results for the natural gas data set of operating area 8

Date Reported flow Imputed flow

23-05-2004 99.45 286.73

15-02-2006 592.12 344.92

16-02-2006 725.77 425.70

23-03-2006 1080.90 341.70

01-06-2006 573.83 253.43

09-01-2007 977.85 356.25

25-05-2007 21.52 196.95

26-05-2007 -43.28 186.08

27-05-2007 -64.50 188.62

28-05-2007 -112.20 189.98

29-05-2007 -44.40 218.61

09-12-2008 515.56 364.56

26-12-2008 457.21 193.05

22-01-2010 55.20 235.50

18-02-2010 944.40 250.80

11-04-2010 -23.32 128.49

30-04-2010 -284.85 156.45

03-04-2012 456.90 192.68

04-04-2012 -74.04 204.82

27-06-2012 819.60 309.37

clean data set are on average smaller than the error calculated on the original test

set (about 33% in RMSE). The largest observed improvements are 76% in RMSE

for April 2012, and 66% in RMSE for June 2012. All other months’ performances

are about the same. Looking at the RMSE and MAPE by unusual day calculated

with models trained on both the original and clean data set, the largest

improvements are observed for the first cold days (61.5% in RMSE and 20% in

MAPE) and the cloudy heating days (43% in RMSE and 20% in MAPE).
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5.3.2 Example 2: Natural Gas Data Set of Operating Area 9

The second example is the reported natural gas consumption of operating area 9.

The data set is from 01 March 2003 through 30 November 2014. The data cleaning

algorithm results are presented in Figure 5.18, Figure 5.19, and Table 5.7.

Table 5.7: Imputation results for the natural gas data set of operating area 9

Date Reported flow Imputed flow

03-08-2012 19.53 49.55

19-02-2014 540.38 440.30

22-02-2014 260.32 418.48

23-02-2014 286.07 514.00

30-07-2014 13.52 61.95

04-08-2014 17.17 54.66

18-09-2014 68.15 118.92

The training set is data from 01 March 2003 through 30 November 2013.

The RMSE and MAPE calculated on the test set from 01 December 2013 through

30 November 2014 by month and by unusual day are presented in

Figures 5.20 and 5.21, respectively.

The RMSE and MAPE by month and by unusual day are lower for the clean

data set than for the original data set. The average observed improvement in RMSE

is 37%. The forecasting improvement, obtained with models trained on clean data,

are observed for February, July, August, and September 2014, with the largest

percentage improvement of 77% in RMSE found in February 2014. No cloudy
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Figure 5.18: Time series plot of the data cleaning results for the natural gas data set

of operating area 9

Figure 5.19: Scatter plot of the data cleaning results for the natural gas data set of

operating area 9
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Figure 5.20: RMSE and MAPE by month for the original and clean data sets of

operating area 9

Figure 5.21: RMSE and MAPE by unusual day for the original and clean data sets

of operating area 9
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heating days were found in the weather of operating area 9. An improvement of

70% in RMSE is observed also for the windiest heating days.

5.3.3 Example 3: Electric Data Set of Operating Area 10

Example 3 is the reported electric consumption for operation area 10. The data set

is from 01 February 2004 to 31 July 2013. The data cleaning algorithm results are

presented in Figure 5.22, Figure 5.23, and Table 5.8.

Figure 5.22: Time series plot of the data cleaning results for the electric data set of

operating area 10

The training set is data from 01 February 2004 through 31 July 2012. The

test set is from 01 August 2013 through 31 July 2013. The same forecasting model



97

Figure 5.23: Scatter plot of the data cleaning results for the electric data set of

operating area 10

used to calculate replacement values and error measures for natural gas data sets is

applied to this example. The RMSE and MAPE calculated on the test set by month

and by unusual day are presented in Figures 5.24 and 5.25, respectively.

The RMSE and MAPE are only improved for the months of August and

September 2012. The forecasting errors for all other months are about the same.

However, the anomalies were found in February, May, August, September, and

October. Since one of the primary uses of electric load is cooling, the improvement

of 28% found in August 2012 is practically significant. The RMSE and MAPE by
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Figure 5.24: RMSE and MAPE by month for the original and clean data sets of

operating area 10

Figure 5.25: RMSE and MAPE by unusual day for the original and clean data sets

of operating area 10
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Table 5.8: Imputation results for the electric data set of operating area 10

Date Reported flow Imputed flow

15-05-2007 511.34 668.31

05-09-2008 598.82 666.33

25-04-2009 384.36 520.32

26-02-2010 284.38 476.35

27-02-2010 347.87 444.50

28-08-2011 278.88 416.48

29-10-2011 284.83 396.36

30-10-2011 280.40 419.35

25-08-2012 497.34 681.80

unusual day are lower for the clean data set than for the original data set for both

warmer and colder days. The average observed RMSE improvement is 7%. There is

no improvement found for high humidity heating days and warmer than normal

days. Note that the imputation model used to calculate replacement values in this

case is the same model used for natural gas data sets, and it yields good results.

5.3.4 Utilities Data Testing Analysis

In this section, the data cleaning algorithm is tested on both natural gas and

electric data sets. For the natural gas data sets, operating area 8 is a region in the

southern part of the United States, while operating area 9 is a region in the

northern part of the United States. Therefore, they both experience different

climates. The principal use of natural gas and electric energy by residential,

commercial, and industrial customers is heating and cooling. Therefore, the

improvement of forecasting errors in winter months for the natural gas data sets and



100

in summer months for the electric data sets are valuable. The energy data sets have

many similarities because the electric data anomalies were imputed by replacement

values calculated using forecasting models intended for natural gas, and provide a

maximum observed RMSE improvement of 28%. The RMSE and MAPE presented

in this section are only single point values calculated on the last year of the test set.

To verify the performance of the data cleaning algorithm throughout the

data sets and also on smaller data sets, a cross-validation scheme is used. The

cross-validation yields a set of results that can be used to find the mean of the error

and also to test the statistical significance of the improvement in forecasting

accuracy. The next section of this chapter explains the cross-validation scheme and

presents the RMSE results obtained for operating area 8 and 9. The cross-validation

scheme is not applied to the electric data set of operation area 10 because of the

lack of good electric forecasting models.

5.4 Cross-validation

The goal of data cleaning is to improve energy demand forecasting accuracy.

Therefore, the improvement in forecasting accuracy by cleaning the data is the

measure of effectiveness of the algorithm. Cross-validation is used to verify the

accuracy and consistency of the results. A cross-validation or random rotation is a

validation technique for assessing how the results of a statistical analysis generalize
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to an independent data set [54]. The objective is to show that if the results obtained

on various subsets are consistent and statistically significant, a conclusion can be

made about the performance of the data cleaning algorithm in general. Also, the

cross-validation demonstrates that the accuracy of the results does not depend on

the choice, type, or length of the data set.

5.4.1 Cross-validation Scheme

An example of cross-validation diagram for the natural gas data set of operating

area 8, composed of eight years of data from 01 May 2004 to 31 July 2012, is

depicted in Figure 5.26. The data is divided into subsets starting with a minimum

Figure 5.26: Example of cross-validation scheme for the data set of operating area 8
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of three years for the training set. The minimum number of years in the training set

is three because the training set should be large enough to be able to train the

forecasting models without memorization. Combinations are built using the subsets.

Each combination is divided into a training set used to train a forecasting model,

and a test set used to calculate out-of-sample errors.

Table 5.9: Subdivision of the data set of operating area 8

Naming convention Subset date range

S1 01-05-2004 to 31-07-2005

S2 01-08-2005 to 31-07-2006

S3 01-08-2006 to 31-07-2007

S4 01-08-2007 to 31-07-2008

S5 01-08-2008 to 31-07-2009

S6 01-08-2009 to 31-07-2010

S7 01-08-2010 to 31-07-2011

S8 01-08-2011 to 31-07-2012

Table 5.9 and Table 5.10 present the data subdivision into subsets and the

combination of those subsets into crosses. The test set length is one year. The years

in the data set must be consecutive because of the nature of the forecasting models

used.

The cross-validation scheme for operating area 9 is presented also in

Tables 5.11 and 5.12. The cross-validation results for operating areas 8 and 9 are

presented in the next section.
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Table 5.10: Cross-validation table for the data set of operating area 8

Number of subsets used for

the training set

Cross number Training set Testing set

1 S1 S2 S3 S4

Training set 2 S2 S3 S4 S5

composed of 3 S3 S4 S5 S6

3 subsets 4 S4 S5 S6 S7

5 S5 S6 S7 S8

6 S1 S2 S3 S4 S5

4 subsets 7 S2 S3 S4 S5 S6

8 S3 S4 S5 S6 S7

9 S4 S5 S6 S7 S8

10 S1 S2 S3 S4 S5 S6

5 subsets 11 S2 S3 S4 S5 S6 S7

12 S3 S4 S5 S6 S7 S8

6 subsets 13 S1 S2 S3 S4 S5 S6 S7

14 S2 S3 S4 S5 S6 S7 S8

7 subsets 15 S1 S2 S3 S4 S5 S6 S7 S8

Table 5.11: Subdivision of the data set of operating area 9

Naming convention Subset date range

S1 01-03-2003 to 30-11-2004

S2 01-12-2004 to 30-11-2005

S3 01-12-2005 to 30-11-2006

S4 01-12-2006 to 30-11-2007

S5 01-12-2007 to 30-11-2008

S6 01-12-2008 to 30-11-2009

S7 01-12-2009 to 30-11-2010

S8 01-12-2010 to 30-11-2011

S9 01-12-2011 to 30-11-2012

S10 01-12-2012 to 30-11-2013

S11 01-12-2013 to 30-11-2014

5.4.2 Cross-validation Results

The cross-validation results for the natural gas data set of operating area 8 and 9

are presented in Table 5.13 and Table 5.16, respectively. A dependent samples t test
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Table 5.12: Cross-validation table for the data set of operating area 9

Number of subsets used for

the training set

Cross number Training set Testing set

1 S1 S2 S3 S4

Training set 2 S2 S3 S4 S5

composed of 3 S3 S4 S5 S6

3 subsets 4 S4 S5 S6 S7

5 S5 S6 S7 S8

6 S6 S7 S8 S9

7 S7 S8 S9 S10

8 S8 S9 S10 S11

9 S1 S2 S3 S4 S5

10 S2 S3 S4 S5 S6

4 subsets 11 S3 S4 S5 S6 S7

12 S4 S5 S6 S7 S8

13 S5 S6 S7 S8 S9

14 S6 S7 S8 S9 S10

15 S7 S8 S9 S10 S11

16 S1 S2 S3 S4 S5 S6

17 S2 S3 S4 S5 S6 S7

5 subsets 18 S3 S4 S5 S6 S7 S8

19 S4 S5 S6 S7 S8 S9

20 S5 S6 S7 S8 S9 S10

21 S6 S7 S8 S9 S10 S11

22 S1 S2 S3 S4 S5 S6 S7

23 S2 S3 S4 S5 S6 S7 S8

6 subsets 24 S3 S4 S5 S6 S7 S8 S9

25 S4 S5 S6 S7 S8 S9 S10

26 S5 S6 S7 S8 S9 S10 S11

27 S1 S2 S3 S4 S5 S6 S7 S8

28 S2 S3 S4 S5 S6 S7 S8 S9

7 subsets 29 S3 S4 S5 S6 S7 S8 S9 S10

30 S4 S5 S6 S7 S8 S9 S10 S11

31 S1 S2 S3 S4 S5 S6 S7 S8 S9

8 subsets 32 S2 S3 S4 S5 S6 S7 S8 S9 S10

33 S3 S4 S5 S6 S7 S8 S9 S10 S11

9 subsets 34 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

35 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

10 subsets 36 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
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is used to test the statistical significance between the results because the objective is

to compare the means of paired samples [95]. The means of RMSE calculated on

both original and clean data sets are compared in this case. The null hypothesis is

H0: the mean of the forecasting errors calculated on original data sets is less than

the mean of the forecasting errors calculated on clean data sets. The alternative

hypothesis is H1: the mean of the forecasting errors calculated on original data sets

is greater than the mean of the forecasting errors calculated on clean data sets.

Table 5.13: Cross-validation results for the natural gas data set of operating area 8

Cross number Avg RMSE

(Original data set)

Avg RMSE

(Clean data set)

1 41.40 41.55

2 50.55 47.10

3 60.67 37.95

4 44.32 42.37

5 47.11 32.18

6 49.65 46.20

7 60.53 37.95

8 43.50 41.62

9 46.88 31.81

10 60.75 38.16

11 42.00 40.28

12 46.50 31.11

13 42.60 40.14

14 46.12 30.82

15 45.75 30.60

µ 48.55 37.99

σ2 45.72 30.75

The results of the one-tailed dependent samples t test are presented in

Table 5.14 and Table 5.15 for operating area 8 and 9, respectively. The results

indicate that the sample of clean data sets yield smaller forecasting errors in average
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Table 5.14: Results for dependent samples t test for operating area 8

degrees of freedom 14

t-statistic 4.68

t critical one-tail 2.62

p-value 1.77×10−4

level of significance 0.01

than the sample of original data sets, and that the difference is statistically

significant in both cases at the 1% level of significance.

Table 5.15: Results for dependent samples t test for operating area 9

degrees of freedom 35

t-statistic 3.18

t critical two-tail 2.43

p-value 1.51×10−3

level of significance 0.01

The mean RMSE by month and by unusual day, calculated on all crosses, for

the natural gas data set of operating area 8 are presented in Figures 5.27 and 5.28.

They show that the results are also practically significant. The mean RMSE by

month and by unusual day calculated on clean data sets are smaller than mean

RMSE by month and by unusual day calculated on original data sets.

The largest observed improvements in RMSE are 45% in April, 41% in June,

and 33% in February. The average observed improvement from data cleaning is 21%
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Table 5.16: Cross-validation results for the natural gas data set of operating area 9

Cross number Avg RMSE

(Original data set)

Avg RMSE

(Clean data set)

1 10.93 10.93

2 12.10 12.10

3 12.48 12.48

4 10.85 10.85

5 12.87 12.87

6 12.53 12.45

7 12.95 12.97

8 21.76 14.68

9 12.45 12.45

10 12.95 12.95

11 10.52 10.52

12 12.58 12.57

13 12.22 12.12

14 12.10 12.10

15 21.25 13.63

16 13.00 13.00

17 11.20 11.20

18 12.60 12.60

19 11.99 11.89

20 12.46 12.46

21 21.08 12.82

22 11.28 11.28

23 12.60 12.60

24 11.80 11.70

25 12.35 12.35

26 20.95 12.70

27 12.57 12.57

28 11.75 11.67

29 12.25 12.25

30 20.77 12.30

31 11.73 11.65

32 12.22 12.22

33 20.75 12.35

34 12.25 12.25

35 20.78 12.38

36 20.80 12.45

µ 14.10 12.28

σ2 14.41 0.59
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Figure 5.27: Mean RMSE by month for the cross-validation results of the data set of

operating area 8

Figure 5.28: Mean RMSE by unusual day for the cross-validation results of the data

set of operating area 8

for the natural gas data set of operating area 8. The largest observed improvement

by unusual day is 51%, obtained for the first cold days.

For the natural gas data set of operating area 9, the comparison between
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mean RMSE by month and mean RMSE by unusual day calculated on original and

clean data sets are presented in Figures 5.29 and 5.30.

Figure 5.29: Mean RMSE by month for the cross-validation results of the data set of

operating area 9

Figure 5.30: Mean RMSE by unusual day for the cross-validation results of the data

set of operating area 9
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For operating area 9, the results are also both practically and statistically

significant at the 1% level of significance. The average observed improvement in

RMSE is 12%, and the largest observed improvements in RMSE are 41% in

February, 32% in July, and 24% in August. The largest observed improvement by

unusual day is 26%, obtained for the windiest heating days. The variance of the

results obtained on clean data sets is smaller (0.59) compared to the variance of the

results obtained on original data sets (14.41), which indicates a better correlation

between forecasting results in the case of clean data sets.

5.4.3 Cross-validation Analysis

For the natural gas data set of operating area 9, some months did not encounter any

improvement because most of the anomalies were identified in the last year of data.

The data cleaning provides average observed improvements of 21% and 12% for

operating area 8 and 9, respectively. The largest observed improvements by unusual

day varies depending on the weather and the region.

The cross-validation is not performed for the electric data set of operating

area 10. The forecasting models used in this dissertation are designed for the

prediction of natural gas demand. Therefore, the error associated with forecasting

models should also be taken into consideration in this case. There is an error

associated with forecasting models but they have been validated by Lim (2002),
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Matin (2004), and Taware (1998) [60, 68, 92], and the assumption can be made that

the natural gas forecasting models perform the same on all crosses.

The cross-validation determines that the improvement in forecasting error

obtained by cleaning the data, which is the difference of errors between the

performance of the models trained on original data set and the cleaned data set, is

statistically significant at the 1% level of significance.

In this chapter, the data cleaning algorithm was evaluated both on simulated

data (for all types of anomalies) and on utilities’ data. They also were tested on

both natural gas and electric energy data sets. A cross-validation is used to evaluate

the performance of the data cleaning algorithm on smaller subsets and to make a

general conclusion about the observed improvements. The next chapter of this

dissertation presents a review of the contributions made and the results obtained.

Recommendations for future work also are proposed to improve upon this research

work.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

This chapter presents a summary of the contributions made by this research,

the techniques developed, and the results obtained. Innovations proposed to improve

the quality of this research work conclude this chapter. This dissertation presents

energy time series data cleaning methods developed with the goal of improving

forecasting accuracy. The literature survey presented in Chapter 2 shows that many

techniques have been developed for anomaly detection, but very few have a practical

usefulness. The techniques mostly are tested on simulated data sets and yield false

positives in practice. The literature survey also underlines the fact that an accurate

data cleaning tool should include domain knowledge of the problem. In this

dissertation, energy demand forecasting knowledge is combined with probabilistic

and statistical techniques to develop data cleaning algorithms for energy time series.

6.1 Summary of the Contributions

The contribution of this dissertation is the generalization of the data cleaning

problem to energy time series. The hypothesis-driven anomaly detection algorithm

is developed to identify anomalies in data sets with a 99% level of confidence.

Statistical and probabilistic approaches are combined to detect anomalies in time

series because probabilistic approaches do not yield good results on time series due
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to their variability and exogenous factors. The energy time series domain knowledge

also is incorporated into the algorithms to provide a practical significance. The data

cleaning models are simple enough to extract exogenous factors influencing the data

but also highlight the anomalies instead of modeling them. However, the imputation

model is a complex forecasting model that models the trend, seasonality, and

variability of the energy time series. Forecasting models are incorporated into the

data cleaning algorithms and are used to improve the accuracy of data imputation.

The data cleaning algorithms are applied to natural gas and electric time series data

from utilities, as well as to simulated data sets. The analysis presented in Chapter 5

shows that cleaning the data provides a statistically and practically significant

improvement in forecasting accuracy.

6.2 Summary of the Results

The data cleaning algorithm is tested on natural gas and electric reported

consumption data sets from utilities. The measure of effectiveness of the results is

the improvement in forecasting accuracy by cleaning the data. A cross-validation

scheme with training subsets of various lengths is used to validate the data cleaning

methods and to draw a general conclusion about the significance of the percentage

of improvement. It is found that the observed improvements provided by data

cleaning are both practically and statistically significant at the 1% level of
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significance. The largest observed improvement in out-of-samples RMSE is 21%,

which is also practically significant for energy demand forecasting.

6.3 Recommendations for Future Work

This research work can be improved by exploring other distributions and studying

the impact of a better fit of the distributions on anomaly detection. From the

example presented in Section 3.2, the normal probability distribution function does

not fit the entire data set well but does approximate the tails of the distribution

(which are the regions of interest). Other parametric and non-parametric

distribution functions can be studied to determine their impact on data cleaning

results. Also, the main areas of concern are the left and right tails of the distribution

because they are the locations of the anomalies. Therefore, another idea is to use a

percentage of the data instead of the entire data set to find the probability of a data

point belonging to the distribution of the remaining data points.

Linear regression models are used in this dissertation to extract time series

features and calculate the residuals of the data set. Machine learning techniques

such as artificial neural networks (ANN) or support vector machines (SVM) could

be studied to model time series in place of statistical methods. However, the models

should not be over-trained, and the anomalous features should not be modeled in

the process. Also, the linear regression models described in this dissertation use one
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lag of the energy signal as autoregressive term. Because the data cleaning approach

developed here is applicable to historical data sets, a forward autoregressive term of

the energy signal can be studied in place of the lag of energy signal. Additionally,

previous day temperature effects (lag of cooling degree days and lag of heating

degree days wind-adjusted) can be included in the linear regression models, and

their impact on time series data cleaning should be studied.

In this dissertation, the detrending and imputation models used are natural

gas demand detrending and forecasting models, respectively. The imputation model

provides an average observed improvement of 7% for the electric data set of

operating area 10. That error can be reduced further by replacing the imputation

and detrending models, in the case of electric time series data, with robust electric

demand forecasting models and electric detrending models.

Machine learning classification techniques can be added also to the

algorithms to improve the accuracy of the anomaly detection process and output a

label for the category of an anomalous data point. The accuracy of the classifiers

depends on the type and the numbers of anomalous features available. Also, the

classifiers have to be re-trained per operating area, which is a tedious task. However,

data transformation techniques such as surrogate data [18] could be used in this case

to transform all anomalous features found on various data sets into a set of features

used to train the classifiers and improve the accuracy of the data cleaning process.
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Data cleaning is a problem found in other fields such as econometrics,

finance, and medicine. The techniques developed in this dissertation can be

expanded to other fields if the exogenous factors of the time series data are known

and the imputation models for the particular context are well defined. The

anomalies are found in the residuals of the time series. Therefore, the exogenous

inputs are used in the linear regression models to extract the time series residual

errors and to identify anomalies. The imputation models are used thereafter to

calculate replacement values for the anomalies found.



117

BIBLIOGRAPHY

[1] R. Adnan, H. Setan, and M. N. Mohamad. Multiple outliers detection
procedures in linear regression. Matematika, 1:29–45, 2003.

[2] M. Adya, S. J. Armstrong, F. Collopy, and M. Kennedy. Automatic
identification of time series features for rule-based forecasting. International
Journal of Forecasting, 17(2):143–157, 2001.

[3] H. N. Akouemo and R. J. Povinelli. Time series outlier detection and
imputation. In PES General Meeting — Conference Exposition 2014 IEEE,
pages 1–5, July 2014.

[4] R. R. Andridge and R. J. A. Little. A review of hot deck imputation for
survey non-response. International Statistical Review, 78(1):40–64, 2010.

[5] F. Angiulli and C. Pizzuti. Outlier mining in large high-dimensional data sets.
IEEE Transactions on Knowledge and Data Engineering, 17(2):203–215, 2005.

[6] S. J. Armstrong, M. Adya, and F. Collopy. Rule-based forecasting: Using
judgment in time-series extrapolation. In Principles of Forecasting: A
Handbook for Researchers and Practitioners, Norwell, MA, USA, 2001. Kluwer
Academic.

[7] S. J. Armstrong and F. Collopy. Error measures for generalizing about
forecasting methods: Empirical comparisons. International Journal of
Forecasting, 8(1):69–80, 1992.

[8] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons,
Hoboken, NJ, USA, 3rd edition, 1994.

[9] M. Beccali, M. Cellura, V. L. Brano, and A. Marvuglia. Short-term prediction
of household electricity consumption: Assessing weather sensitivity in a
Mediterranean area. Renewable and Sustainable Energy Reviews,
12:2040–2065, 2008.

[10] M. S. Beigi, S.-F. Chang, S. Ebadollahi, and D. C. Verma. Anomaly detection
in information streams without prior domain knowledge. IBM Journal of
Research and Development, 55(5 - Article 11):1–11, 2011.

[11] I. Ben-Gal. Outlier detection, In: Maimon O. and Rockach L. (Eds.) Data
Mining and Knowledge Discovery Handbook: A Complete Guide for



118

Practitioners and Researchers. Kluwer Academic Publishers, 2005.

[12] A. M. Bianco, M. Garćıa Ben, E. J. Mart́ınez, and V. J. Yohai. Outlier
detection in regression models with ARIMA errors using robust estimates.
Journal of Forecasting, 20(8):565–579, 2001.

[13] P. J. Bickel and K. A. Doksum. Mathematical Statistics: Basic Ideas and
Selected Topics, volume 1. Pearson Prentice-Hall, San Francisco, CA, USA,
2nd edition, 2001.

[14] M. Bouguessa. A probabilistic combination approach to improve outlier
detection. In 2012 IEEE 24th International Conference on Tools with
Artificial Intelligence, volume 1, pages 666–673, 2012.

[15] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis:
Forecasting and Control. John Wiley & Sons, Hoboken, NJ, USA, 4th edition,
2008.

[16] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. OPTICS-OF:
Identifying local outliers. In Proceedings of the 3rd European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD’99),
volume 1704, pages 262–270, Prague, Czech Republic, 1999.

[17] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, volume 29, pages 93–104.
ACM Press, 2000.

[18] R. H. Brown. Research results: The Heck-with-it hook and other observations.
In Southern Gas Association Conference: Gas Forecasters Forum,
Jacksonville, FL, USA, October 2007.

[19] R. H. Brown, Y. Li, B. Pang, S. R. Vitullo, and G. F. Corliss. Detrending
daily natural gas demand data using domain knowledge. In Proceedings of the
30th International Symposium on Forecasting, 2010.

[20] C. J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):1–47, 1998.
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